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ABSTRACT 
 

In the present work, a study involving a spectral method to solve the reactive Euler and Navier-
Stokes equations is performed. The Euler and Navier-Stokes equations, in conservative and finite 
volume contexts, employing structured spatial discretization, on a condition of chemical non-
equilibrium, are studied. The spectral method presented in this work employs collocation points and 
variants of Chebyshev and Legendre interpolation functions are analyzed. High-order studies are 
performed to verify the accuracy of the spectral method. The “hot gas” hypersonic flows around a 
blunt body, around a double ellipse, and around a reentry capsule in two-dimensions are 
performed. The Van Leer and the Liou and Steffen Jr. flux vector splitting algorithms are applied to 
accomplish the numerical experiments. The Euler backward integration method is employed to 
march the schemes in time. The convergence process is accelerated to steady state condition 
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through a spatially variable time step procedure, which has proved effective gains in terms of 
computational acceleration (see Maciel). The reactive simulations involve Earth atmosphere 
chemical model of five species and seventeen reactions, based on the Saxena and Nair model. N, 
O, N2, O2, and NO species are used to perform the numerical comparisons. The results have 
indicated that the Chebyshev collocation point variants are more accurate in terms of stagnation 
pressure estimations, whereas the Legendre collocation point variants are more accurate in terms 
of the lift coefficient estimations. Moreover, the Legendre collocation point variants are more 
computationally efficient and cheaper. 
 

 
Keywords: Hypersonic flow; chemical non-equilibrium reentry flows; reactive Euler and Navier-Stokes 

equations; high order accuracy; Van Leer scheme; Liou and Steffen Jr. scheme; spectral 
method. 

 

1. INTRODUCTION 
 
There are several approaches for computa-
tionally modeling fluid dynamics. These include 
finite difference, finite element, and spectral 
methods to name a few. Finite element and finite 
difference methods are frequently used and offer 
a wide range of well-known numerical schemes. 
These schemes can vary in terms of 
computational accuracy but are typically of lower 
order of accuracy. If a more accurate solution is 
desired, it is common practice to refine the mesh 
either globally or in a region of interest. This can 
often be a complicated or time consuming 
process as global mesh refinement will greatly 
increase the computation time while local 
refinement requires an elaborated refinement 
operation, [1]. 
 
Alternatively, polynomial refinement has been 
used to improve the solution accuracy and has 
been shown to converge more quickly than mesh 
refinement in some cases [2-3]. For finite 
difference methods, polynomial refinement is 
performed by including neighboring node values 
in a higher order polynomial [4]. This can 
increase the complexity of the scheme especially 
near the boundaries where nodes do not exist to 
construct the higher order polynomials. Finite 
element methods instead increase the number of 
unknown values within the cell itself to construct 
a higher order solution [5]. 
 

A scheme with a very high formal order of 
accuracy will not necessarily always produce the 
highest resolution. [6] demonstrated that a 
spectral-like scheme with a formal fourth-order 
accuracy produced a much more highly resolved 
solution than schemes with higher formal orders 
of accuracy when comparing modified wave 
numbers. Therefore, formal order of accuracy 
does not provide a comprehensive basis for 
selecting the best solution procedure. State-of-art 

methods such as spectral methods fall into this 
category. 
 
Spectral methods are considered a class of 
solution techniques using sets of known 
functions to solve differential equations [7]. Such 
methods are generally considered high order and 
capable of obtaining solutions with a high 
resolution. Unlike finite-difference and finite-
element methods, spectral methods utilize an 
expansion in terms of global, rather than local, 
basis functions to represent the solution of a 
differential equation. When properly applied, 
these techniques accurately resolve phenomena 
on the scale of the mesh spacing. The order of 
truncation error decay with mesh refinement is 
also higher than which can be achieved with 
finite-difference and finite-element methods. For 
problems with smooth solutions, it is possible to 
produce spectral method whose truncation error 
goes to zero as faster than any finite power of 
the mesh spacing (exponential convergence). 

 
Spectral methods may be viewed as an extreme 
development of the class of discretization 
schemes known by the generic name of method 
of weighted residuals (MWR) [8]. The key 
elements of the MWR are the trial functions (also 
called the expansion or approximating functions) 
and the test functions (also known as weighted 
functions). The trial functions are used as the 
basis functions for a truncated series expansion 
of the solution that, when substituted into the 
differential equation, produces the residual. The 
test functions are used to enforce the 
minimization of the residual. 
 
The choice of the trial functions is what 
distinguishes the spectral methods from the 
element and finite difference methods. The trial 
functions for spectral methods are infinitely 
differentiable global functions (Typically, they are 
tensor products of the eigenfunctions of singular 
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Sturm-Liouville problems). In the case of finite 
element methods, the domain is divided into 
small elements and a trial function is specified in 
each element. The trial functions are thus local in 
character and well suited for handling complex 
geometries. The finite difference trial functions 
are likewise local. 
 
The choice of test function distinguishes between 
Galerkin and collocation approaches. In the 
Galerkin approach, the test functions are the 
same as the trial functions, whereas in the 
collocation approach the test functions are 
translated Dirac delta functions. In other words, 
the Galerkin approach is equivalent to a least-
square approximation, whereas the collocation 
approach requires the differential equations to be 
solved exactly at the collocation points. 
 
The collocation approach is the simplest of the 
MWR and appears to have been first used by [9] 
in his study of electronic energy bands in metals. 
A few years later, [10] applied this method to the 
problem of torsion in square prism. [11] 
developed it as a general method for solving 
ordinary differential equations. They used a 
variety of trials functions and an arbitrary 
distribution of collocation points. The work of [12] 
established for the first time that a proper choice 
of the trial functions and the distribution of 
collocation points are crucial to the accuracy of 
the solution. Perhaps he should be credited with 
laying down the foundation of the orthogonal 
collocation method.  
 
Spectral methods have been used on one-
dimensional, compressible flow problems with 
piecewise linear solutions by [13-14]. These 
reports demonstrated that spectral methods, 
when combined with appropriate filtering 
techniques, can capture one-dimensional shock 
waves in otherwise featureless flows. A different 
sort of demonstration was provided by [15]. They 
exhibited spectral solutions of compressible flows 
with nontrivial structures in the smooth regions. 
 
Renewed interest in the area of hypersonic flight 
has brought Computational Fluid Dynamics 
(CFD) to the forefront of fluid flow research [16]. 
Many years have seen a quantum leap in 
advancements made in the areas of computer 
systems and software which utilize them for 
problem solving. Sophisticated and accurate 
numerical algorithms are devised routinely that 
are capable of handling complex computational 
problems. Experimental test facilities capable          
of addressing complicated high-speed flow 

problems are still scarce because they are            
too expensive to build and sophisticated 
measurements techniques appropriate for such 
problems, such as the non-intrusive laser, are 
still in the development stage. As a result, CFD 
has become a vital tool in the flow problem 
solution. 
 
In high speed flows, any adjustment of chemical 
composition or thermodynamic equilibrium to a 
change in local environment requires certain 
time. This is because the redistribution of 
chemical species and internal energies require 
certain number of molecular collisions, and 
hence a certain characteristic time. Chemical 
non-equilibrium occurs when the characteristic 
time for the chemical reactions to reach local 
equilibrium is of the same order as the 
characteristic time of the fluid flow. Similarly, 
thermal non-equilibrium occurs when the 
characteristic time for translation and various 
internal energy modes to reach local equilibrium 
is of the same order as the characteristic time of 
the fluid flow. Since chemical and thermal 
changes are the results of collisions between the 
constituent particles, non-equilibrium effects 
prevail in high-speed flows in low-density air. 
 
In chemical non-equilibrium flows the mass 
conservation equation is applied to each of the 
constituent species in the gas mixture. Therefore, 
the overall mass conservation equation is 
replaced by as many species conservation 
equations as the number of chemical species 
considered. The assumption of thermal non-
equilibrium introduces additional energy 
conservation equations – one for every additional 
energy mode. Thus, the number of governing 
equations for non-equilibrium flow is much bigger 
compared to those for perfect gas flow. A 
complete set of governing equations for non-
equilibrium flow may be found in [17-18]. 
 
In the present work, a study involving a spectral 
method to solve the reactive Euler and Navier-
Stokes equations is performed. The Euler and 
Navier-Stokes equations, in conservative and 
finite volume contexts, employing structured 
spatial discretization, on a condition of chemical 
non-equilibrium, are studied. The spectral 
method presented in this work employs 
collocation points and variants of Chebyshev and 
Legendre interpolation functions are analyzed. 
High-order studies are performed to verify the 
accuracy of the spectral method. The “hot gas” 
hypersonic flows around a blunt body, around a 
double ellipse, and around a reentry capsule in 
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two-dimensions are performed. The [19-20] flux 
vector splitting algorithms are applied to 
accomplish the numerical experiments. The 
Euler backward integration method is employed 
to march the schemes in time. The convergence 
process is accelerated to steady state condition 
through a spatially variable time step procedure, 
which has proved effective gains in terms of 
computational acceleration (see [21-22]). The 
reactive simulations involve Earth atmosphere 
chemical model of five species and seventeen 
reactions, based on the [23] model. N, O, N2, O2, 
and NO species are used to perform the 
numerical comparisons. The results have 
indicated that the Chebyshev collocation point 
variants are more accurate in terms of stagnation 
pressure estimations, whereas the Legendre 
collocation point variants are more accurate in 
terms of the lift coefficient estimations. Moreover, 
the Legendre collocation point variants are more 
computationally efficient and cheaper. 
  
2. SPECTRAL METHOD 
 
Two classes of techniques for spectral 
discretization are referred to as tau and 
collocation methods [24]. The latter technique is 
used here. In this scheme, the approximation 
series is determined by satisfying the differential 
equation exactly at a set of distinct collocation 
points. The locations of these points in the 
domain are linked to the choice of basis function. 
In this study, arbitrary collocation points are 
implemented. The collocation method is used 
here since enforcement of boundary conditions 
and evaluations of nonlinear terms are 
straightforward. Additionally, some accuracy 
advantage is seen in the collocation method over 
the tau method for a number of problems [24]. 
The series expansion for a function Q(x) may be 
represented as 
 

,                                  (1) 

 
where Bn(x) are the basis functions and N is the 
total number of nodes employed in the 
interpolation process (it is also the order of 
accuracy of the spectral method). The 

coefficients  are often termed the spectrum 

of QN(x). One common technique used to 
evaluate the spectrum is to consider Eq. (1) as 
an interpolation series representing Q(x). The 
interpolation “nodes” of such series are the 
collocation points of the method.  For a scheme 

based on Chebyshev collocation, the basis 
functions are: 
 

,

,                                                            (2) 

 

with: P0(x) = 1 and P1(x) = x. The Chebyshev-
Gauss-Lobatto standard collocation points are 

 

,          l = 0, 1, …, N.                (3) 

 

The Chebyshev collocation points result from a 
simple change of variables, which relates the 
Chebyshev interpolation series to a Fourier 

cosine series [24]. To evaluate the , the 

inverse relation is required. This is 

 

,          n = 0, 1, …, N,                 

(4) 

 

with wl being a normalized weighting function 
and  a constant. These variables assume the 

following expressions to a Chebyshev-Gauss-
Lobatto interpolation: 

 

, where:    

and   .                                                 (5) 

 

Legendre collocation is based on using Legendre 
polynomials as the basis function in Eq. (1), e.g.,  

 

,

,                                                            (6) 

 

where: P0(x) = 1 and P1(x) = x. Interpolation via 
Legendre series cannot easily be related to 
trigonometric interpolation, so there is no simple 

expression to evaluate the  coefficients. 

Appeal must be made to the theory of numerical 
quadrature to form an approximation to the 
integrals which result from analytic Legendre 
interpolation [25]. Considering Eq. (4), the 
normalized weights and constant of the 
Legendre-Gauss-Lobatto collocation points are: 
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    and   

                  (7) 

 

In this work, it was assumed that the Legendre-
Gauss-Lobatto collocation points are the same 
as the Chebyshev-Gauss-Lobatto ones. It was 
also adopted the following collocation points and 
normalized weight for the Chebyshev-Gauss-
Radau interpolation, based on the work of [26]: 
 

,                                        (8) 

 

.                         (9) 

 
For the Legendre-Gauss-Radau interpolation, 
also based in [26], the collocation points are 
defined by Eq. (8) and the normalized weights 
are described by: 
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The same calculation to the vector of conserved 
variables Q is applied to the vector of flux C, to 
be defined in section 4. 
 

Hence, we have two collocation point options 
and two normalized weight functions to be 
considered by the Chebyshev and the Legendre 
methods, namely: Chebyshev-Gauss-Radau, 
Chebyshev-Gauss-Lobatto, Legendre-Gauss-
Radau and Legendre-Gauss-Lobatto. 
 

3. EULER AND NAVIER-STOKES EQUA-
TIONS 

 
As the Navier-Stokes equations tend to the Euler 
equations when high Reynolds number are 
employed, only the former equations are 
presented. The reactive Navier-Stokes equations 
in chemical non-equilibrium were implemented 
on a finite volume context, in the two-dimensional 
space. In this case, these equations in integral 
and conservative forms can be expressed by: 

  




V V

C

S

dVSdSnFQdV
t


, with: 
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
 ,                      (11) 

 
where: Q is the vector of conserved variables, V 

is the volume of a computational cell, F


 is the 

complete flux vector, n


 is the unity vector normal 
to the flux face, S is the flux area, SC is the 
chemical source term, Ee and Fe are the 
convective flux vectors or the Euler flux vectors 
in the x and y directions, respectively, and Ev and 
Fv are the viscous flux vectors in the x and y 
directions, respectively. For expressions to 

calculate the flux area see Table 1. The i


 and 

j


 unity vectors define the Cartesian coordinate 

system. Eight (8) conservation equations are 
solved: one of general mass conservation, two of 
linear momentum conservation, one of total 
energy, and four of species mass conservation. 
Therefore, one of the species is absent of the 
iterative process. The CFD (Computational Fluid 
Dynamics) literature recommends that the 
species of biggest mass fraction of the gaseous 
mixture should be omitted, aiming to result in a 
minor numerical accumulation error, 
corresponding to the biggest mixture constituent 
(in the case, the air). To the present study, in 
which is chosen a chemical model to the air 
composed of five (5) chemical species (N, O, N2, 
O2, and NO) and seventeen (17) chemical 
reactions, being fifteen (15) dissociation 
reactions (endothermic reactions) and two (2) of 
exchange or recombination, this species can be 
the N2 or the O2. To this work, it was chosen the 
N2. The vectors Q, Ee, Fe, Ev, Fv and SC as well 
their parameters are defined in [27-28]. Details of 
the present implementation for the five species 
chemical model, as well the specification of the 
thermodynamic and transport properties are 
described in [27-28]. 
 
4. FLUX VECTOR SPLITTING SCHEMES 
 
Considering the two-dimensional and structured 
case, the two algorithms follow that described in 
[19-20,27-28], where a one-temperature model is 
taken into account. The algorithms are 
decomposed in two contributions, according to 
[29]: the dynamic and chemical contributions. 
Fig. 1 shows a schematic of the computational 
cell, its nodes, and flux interfaces. The time 
integration is performed employing the Euler 
backward method, first-order accurate in time, to 
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the two types of convective flux. Both schemes 
are first-order accurate in space and in time. The 
high-order spatial accuracy is obtained, in the 
current study, by the spectral method. 
 

The viscous formulation follows that of [30], 
which adopts the Green theorem to calculate 
primitive variable gradients. The viscous 
gradients at the interface are obtained by 
arithmetical average between cell (i,j) and its 
neighbors. As was done with the convective 
terms, there is a need to separate the viscous 
flux in two parts: dynamical viscous flux, and 
chemical viscous flux. The dynamical part 
corresponds to the first four equations of the 
Navier-Stokes ones, and the chemical part 
corresponds to the following four equations. 
 

5. SPATIALLY VARIABLE TIME STEP 
 
The spatially variable time step has proved 
efficient gains in terms of convergence 
acceleration, as verified by [21-22]. The total 
pressure of the gaseous mixture is determined 
by Dalton law, which indicates that the total 
pressure of the gas is the sum of the partial 
pressure of each constituent gas, resulting in: 
 

TRcp sss     and   



ns

1s
spp ,                   (12) 

 

where: ps is the species pressure, cs is the mass 
fraction, ρ is the mixture density, Rs is the gas 
constant, T is the flow temperature, and “ns” is 
the total number of species. The speed of sound 
“a” to a reactive mixture is defined in [27-28]. 
Finally, the spatially variable time step is defined 
from the CFL (Courant-Friedrichs-Lewis) 
definition: 
 

j,i
2
j,i

2
j,i

j,i

j,i

avu

sCFL
t
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
 ,                              (13) 

 

where j,is  is the characteristic length of each 

cell (defined between the minimum cell side and 
the minimum centroid distance between each cell 
and its neighbors), and ui,j and vi,j are the velocity 
components. 
 

6. DIMENSIONLESS SCALES, INITIAL 
AND BOUNDARY CONDITIONS 

 

6.1 Dimensionless Scales 
 

The dimensionless employed to the chemical 
non-equilibrium case consisted in: Rs is 

nondimensionalized by achar, where 

charcharchar pa   and the characteristic 

properties are obtained from [31]; cv, the specific 
heat at constant volume, is nondimensionalized 

by achar; hs and 
0
sh , the enthalpy and the 

formation enthalpy, are nondimensionalized by 
2
chara ; T, translational/rotational temperature, is 

nondimensionalized by achar; s and  are 
nondimensionalized by char; u and v are 
nondimensionalized by achar; , the molecular 
viscosity, is nondimensionalized by char; D, 

diffusion coefficient, nondimensionalized by 
2
chara

dtchar, where dtchar is the minimum time step 
calculated in the computational domain at the 

first iteration;   is nondimensionalized by 

  3
charchar 10xdt  ; e and p are 

nondimensionalized by 
2
charchara . 

 

6.2 Initial Condition 
 
The initial conditions to the blunt body, to the 
double ellipse, and to the reentry capsule 
problems, for a five species chemical model, are 
presented in Tables. 2-4. The Reynolds number 
is obtained from data of [31]. 
 
6.3 Boundary Conditions 
 
The boundary conditions are basically of four 
types: solid wall, entrance, exit, and continuity. 
These conditions are implemented with the help 
of ghost cells. 
 
Wall condition: In inviscid case, this condition 
imposes the flow tangency at the solid wall. This 
condition is satisfied considering the wall tangent 
velocity component of the ghost volume as 
equals to the respective velocity component of its 
real neighbor cell. At the same way, the wall 
normal velocity component of the ghost cell is 
equaled in value, but with opposite signal, to the 
respective velocity component of the real 
neighbor cell. To the viscous case, the boundary 
condition imposes that the ghost cell velocity 
components be equal to the real cell velocity 
components, with the negative signal. 
 
The normal pressure gradient of the fluid at the 
wall is assumed to be equal to zero according to 
a boundary-layer like condition. The same 
hypothesis is applied for the normal temperature 
gradient at the wall, assuming an adiabatic wall. 
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From the above considerations, density and 
translational / rotational temperature are 
extrapolated from the respective values of its real 
neighbor volume (zero order extrapolation). The 
mixture formation enthalpy is extrapolated from 
the real cell. To the species density, the non-
catalytic condition is imposed, what corresponds 
to zero order extrapolation from the real cell. 
 
Entrance condition: It is divided in two flow 
regimes: 
 

(a)  Subsonic flow: Three properties are 
specified and one extrapolated in the 
boundary conditions of the dynamic part of 
the [19-20] algorithms. This approach is 
based on information propagation analysis 
along characteristic directions in the 
calculation domain [32]. In other words, for 
subsonic flow, three characteristics 
propagate information pointing into the 
computational domain. Thus three flow 
properties must be fixed at the inlet plane. 
Just one characteristic line allows 
information to travel upstream. So, one 
flow variables must be extrapolated from 
the interior grid to the inlet boundary. The 
total energy was the extrapolated variable 
from the real neighbor volume, for the 
studied problems. Density and velocity 
components adopted values of the initial 
flow. To the chemical part, four information 
propagate upstream because it is assumed 
that all four equations are conducted by 
the eigenvalue “(qn-a)”. In the subsonic 
flow, all eigenvalues are negative and the 
information should be extrapolated. 

(b)  Supersonic flow: In this case no 
information travels upstream; therefore all 
variables are fixed with their initial values. 

 
Exit condition: It is also divided in two flow 
regimes: 
 

(a)  Subsonic flow: Three characteristics 
propagate information outward the 
computational domain. Hence, the 
associated variables should be 
extrapolated from interior information. The 
characteristic direction associated to the 
“(qnormal-a)” velocity should be specified 
because it points inward to the 
computational domain [32]. In this case, 
the ghost volume total energy is specified 
from its initial value. Density and velocity 
components are extrapolated. To the 
chemical part, the eigenvalue “(qn-a)” is 

again negative and the characteristic is 
always flowing in to the computational 
domain. Hence, the four chemical species 
under study should have their densities 
fixed by their initial values. 

(b)  Supersonic flow: All variables are 
extrapolated from interior grid cells, as no 
flow information can make its way 
upstream. In other words, nothing can be 
fixed. 

 
Continuity condition: This condition imposes 
continuity of the flow at the trailing edge of the 
reentry capsule configuration. This is done 
considering the Kutta condition in this region. In 
terms of numerical implementation, it is obtained 
considering the vector of conserved variables 
above the wake as equal to the vector of 
conserved variables below the wake. 
 

7. PHYSICAL PROBLEMS 
 
Three physical problems were solved in this 
work, namely: blunt body, double ellipse, and 
reentry capsule. The first problem considers the 
geometry of a blunt body with 1.0 m of nose ratio 
and parallel rectilinear walls. The far field is 
located at 20.0 times the nose ratio in relation to 
the configuration nose. A mesh composed of 
2,548 rectangular cells and 2,650 nodes was 
studied for the inviscid case, with an exponential 
stretching of 5.0% for the viscous case. This 
mesh is equivalent in finite differences to a one 
of 53x50 points. Fig. 2 shows the detail of the 
geometry and Figs. 3 and 4 exhibit the inviscid 
and viscous meshes. 
 
The double ellipse problem is the second under 
study. The mesh is composed of 4,116 
rectangular cells and 4,250 nodes, with an 
exponential stretching of 5.0% for the viscous 
case, and far field located at 20.0 unities. This 
mesh is equivalent in finite differences to a one 
of 85x50 points. Fig. 5 shows the double ellipse 
geometry and Figs. 6 and 7 exhibit the inviscid 
and viscous meshes. 
 
The third problem is the geometry of the reentry 
capsule. Details of the configuration are 
presented in Fig. 8. The far field is also located at 
20.0 unities. A mesh of 3,136 rectangular cells 
and 3,250 nodes was used for the inviscid case, 
whereas with an exponential stretching of 5.0% 
was used for the viscous simulations. This mesh 
is equivalent in finite differences to a one of 
65x50 points. Figs. 9 and 10 show the inviscid 
and viscous meshes. 



 

Fig. 1. Computational cell

Fig. 3. Blunt body inviscid mesh

 

Fig. 5. Double ellipse configuration
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Fig. 4. Blunt body viscous mesh 

 

Fig. 6. Double ellipse inviscid mesh 



Fig. 7. Double ellipse viscous mesh

Fig. 9. Reentry capsule inviscid mesh
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Fig. 11. Pressure contours (CGR
 

8. RESULTS 
 

Tests were performed in a Core i7 processor of 
2.1GHz and 8.0Gbytes of RAM microcomputer, 
in a Windows 7.0 environment. Three (3) orders 
of reduction of the maximum residual in the field 
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Fig. 11. Pressure contours (CGR-VL) Fig. 12. Pressure contours (CGR

Tests were performed in a Core i7 processor of 
2.1GHz and 8.0Gbytes of RAM microcomputer, 
in a Windows 7.0 environment. Three (3) orders 
of reduction of the maximum residual in the field 

were considered to obtain a converged solution. 
The residual was defined as the value of the 
discretized conservation equation. In the 
dynamic part of the flux vector splitting schemes, 
such definition results in: 
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Fig. 8. Reentry capsule configuration 

Fig. 10. Reentry capsule viscous mesh 

 
Fig. 12. Pressure contours (CGR-LS) 
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j,ij,ij,i CVtsidualRe  .                    (14) 

 
The attack angle was adopted equal to zero. For 
a matter of simplicity, we use the following 
abbreviations: Scheme [19] = VL; Scheme [20] = 
LS; Chebyshev-Gauss-Radau = CGR; 
Chebyshev-Gauss-Lobatto = CGL; Legendre-
Gauss-Radau = LGR; and Legendre-Gauss-
Lobatto = LGL. For the inviscid solutions, a 4th 
order spectral method was used, whereas in the 
viscous case, a 16

th
 order spectral method was 

employed. 
 

8.1 Blunt Body Problem 
 
Inviscid case: Figs. 11 to 14 exhibit the 
pressure and temperature contours obtained by 
the VL and LS schemes as using the CGR 
collocation points. The LS algorithm captures a 
more intense shock than the VL scheme, as can 
be seen by the pressure contours. Good 
symmetry and homogenous properties are 
observed in the pressure and in the 
translational/rotational temperature contours. No 
pre-shock oscillations are observed. The 
maximum temperature at the configuration nose 
is 7,956.65K, obtained by the VL scheme. 
 
Figs. 15 to 18 show the pressure and 
translational/rotational temperature contours 
generated by the VL and LS schemes as using 
CGL collocation points. The maximum pressure 
is obtained again by the LS algorithm, being 
inferior to that observed in the CGR case. Some 
pressure oscillations are observed close to the 
shock wave. The temperature contours presents 
good symmetry properties. The maximum 
temperature reaches the value of 8,115.91K and 
is again captured by the VL scheme. The 
contours are free of oscillations. 
 
Figs. 19 to 22 present the pressure and 
translational/rotational temperature contours 
calculated by the VL and LS schemes when 
using the LGR collocation points. The pressure 
peaks of both solutions are smaller than those 
obtained in the Chebyshev variants. No pressure 
oscillations are observed and good symmetry 
properties are verified. The maximum 
temperature peak is 8,552.61K, obtained again 
by the VL scheme. Good symmetry properties 
are also observed in both contours. 
 

Figs. 23 to 26 exhibit the pressure and 
temperature contours obtained by the VL and LS 
algorithms when using the LGL collocation 

points. The pressure peaks are still low. Good 
symmetry and homogeneous properties are 
observed and the shock wave is well captured. 
The temperature contours present also good 
symmetry properties, free of oscillations. The 
maximum temperature is obtained by the VL 
scheme with a value of 8,475.46K. 
 
Viscous case: Figs. 27 to 30 present the 
pressure and temperature contours generated by 
the VL and LS schemes as using CGR 
collocation points. The pressure peaks are very 
close to the theoretical stagnation pressure 
value, with LS scheme being the closest. Good 
symmetry properties are observed and no pre-
shock oscillations are observed. The maximum 
temperature is again calculated with the VL 
scheme, reaching the mark of 8,391.94K. Good 
symmetry properties are verified. Note that the 
heat transfer is better captured by the VL 
scheme, as can be seen by the contours of 
temperature close to the configuration wall. The 
correct transport of properties like viscosity and 
thermal conduction are qualitatively confirmed. 
 
Figs. 31 to 34 show the pressure and 
translational/rotational temperature contours 
calculated by the VL and LS algorithms when 
using CGL collocation points. Again the LS’ 
pressure peak is close to the theoretical value of 
stagnation pressure (see Table 5). The shock 
wave is well captured by both schemes, with 
pressure oscillations verified in the LS scheme 
close to the configuration nose. Figs. 33 and 34 
show the translational/rotational temperature 
contours and the good transport of viscosity and 
thermal conduction is noted in the VL solution. 
The maximum temperature is 8,452.99 K and is 
again obtained by the VL scheme; in other 
words, the VL scheme is being more 
conservative than the LS scheme. 
 
Figs. 35 to 38 exhibit the pressure and 
temperature contours obtained by the VL and LS 
algorithms as using the LGR collocation points. 
Both pressure contours are very similar in 
qualitative terms, although the pressure peaks 
are very low. Good symmetry properties are 
observed in both solutions, free of pre-shock 
oscillations. Figs. 37 and 38 exhibit the 
temperature contours calculated by the VL and 
LS schemes. The temperature field of LS 
algorithm is more intense than that of the VL 
scheme, reaching a maximum of 8,902.43K. 
Good symmetry and homogenous properties are 
observed in both figures. 
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Fig. 13. Translational/rotational 
temperature contours (CGR-VL) 

 
Fig. 14. Translational/rotational 
temperature contours (CGR-LS) 

 
Fig. 15. Pressure contours (CGL-VL) 

 
Fig. 16. Pressure contours (CGL-LS) 

 
Fig. 17. Translational/rotational 
temperature contours (CGL-VL) 

 
Fig. 18. Translational/rotational 
temperature contours (CGL-LS) 

 
Figs. 39 to 42 present the pressure and 
translational/rotational temperature contours 
calculated by the VL and LS algorithms when 
using the LGL collocation points. Both pressures 
are reduced in relation to the theoretical 
stagnation pressure value. Both solutions 
present good symmetry and homogenous 

properties, free of oscillations. The shock waves 
are well captured and the transport of properties 
is well highlighted in the VL’s temperature 
contours. The Legendre solutions present in 
general higher values to the stagnation 
temperature than the Chebyshev solutions. It 
seems that Chebyshev variants dominate the 
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pressure field, whereas the Legendre variants 
dominate the temperature field. 
 

8.2 Double Ellipse 
 

Inviscid case: In this problem, only the VL 
scheme converged in the numerical simulations. 
Figs. 43 to 50 show pressure and temperature 
contours generated by the VL and LS algorithms 
as using the CGR, CGL, LGR, and LGL 
collocation points. Comparing with the theoretical 
stagnation pressure value, the best result is due 
to CGR collocation points with an error of 3.79%. 
Good symmetry and homogenous properties are 
observed in all solutions and the two shock 
waves are well captured by all spectral variants. 
 

Viscous case: Again, only the VL scheme 
generated converged results. Figs. 51 to 58 
exhibit the pressure and temperature contours 
calculated with the VL and LS schemes as using 
the CGR, CGL, LGR, and LGL variants of the 
proposed spectral method. The best value to the 
stagnation pressure is captured by the CGR 
collocation points, with an error of 0.23%. Good 

symmetry and homogenous properties are 
observed in all solutions. Figs. 52, 54, 56 and 58 
exhibit the thermal boundary layer captured by all 
variants of the spectral method as using the VL 
scheme. The transport properties are well 
detected by the VL scheme. 
 

8.3 Reentry Capsule 
 
Inviscid case: Figs. 59 to 62 present the 
pressure and translational/rotational temperature 
contours obtained by the VL and LS schemes as 
using the CGR collocation points. Figs. 59 and 
60 present the pressure contours and good 
symmetry and homogenous properties are 
verified. The Kutta condition was correctly 
implemented. There are qualitative differences in 
the pressure contours captured by both 
schemes. The solution of Fig. 59 seems better to 
represent the normal shock. Figs. 61 and 62 
present the temperature contours and good 
symmetry properties are noted. Again, the 
normal shock seems better captured by the VL 
solution. 

Fig. 19. Pressure contours (LGR-VL) 
 

Fig. 20. Pressure contours (LGR-LS) 

 
Fig. 21. Translational/rotational 
temperature contours (LGR-VL) 

 
Fig. 22. Translational/rotationl temperature 

contours (LGR-LS) 
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Fig. 23. Pressure contours (LGL-VL) 

 
 

Fig. 24. Pressure contours (LGL-LS) 
 

 
 

Fig. 25. Translational/rotational 
temperature contours (LGL-VL) 

 
 

Fig. 26. Translational/rotational 
temperature contours (LGL-LS) 

 
BLUNT BODY VISCOUS SOLUTIONS 

 
 

Fig. 27. Pressure contours (CGR-VL) 

 
 

Fig. 28. Pressure contours (CGR-LS) 
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Fig. 29. Translational/rotational 
temperature contours (CGR-VL) 

 
 

Fig. 30. Translational/rotational 
temperature contours (CGR-LS) 

 
 

Fig. 31. Pressure contours (CGL-VL) 

 
 

Fig. 32. Pressure contours (CGL-LS) 

 
 

Fig. 33. Translational/rotational temperature 
contours (CGL-VL) 

 
 

Fig. 34. Translational/rotational temperature 
contours (CGL-LS) 
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Fig. 35. Pressure contours (LGR-VL) 

 
 

Fig. 36. Pressure contours (LGR-LS) 

 
 

Fig. 37. Translational/rotational 
temperature contours (LGR-VL) 

 
 

Fig. 38. Translational/rotational 
temperature contours (LGR-LS) 

 
 

Fig. 39. Pressure contours (LGL-VL) 

 
 

Fig. 40. Pressure contours (LGL-LS) 
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Fig. 41. Translational/rotational 
temperature contours (LGL-VL) 

 
 

Fig. 42. Translational/rotational 
temperature contours (LGL-LS) 

 
DOUBLE ELLIPSE INVISCID SOLUTIONS 

 
 

Fig. 43. Pressure contours (CGR-VL) 

 
 

Fig. 44. Translational/rotational temperature 
contours (CGR-VL) 

 
 

Fig. 45. Pressure contours (CGL-VL) 

 
 

Fig. 46. Translational/rotational temperature 
contours (CGL-VL) 
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Fig. 47. Pressure contours (LGR-VL) 

 
 

Fig. 48. Translational/rotational temperature 
contours (LGR-VL) 

 

 
 

Fig. 49. Pressure contours (LGL-VL) 

 
 

Fig. 50. Translational/rotational 
temperature contours (LGL-VL) 

 
DOUBLE ELLIPSE VISCOUS SOLUTIONS 

 
 

Fig. 51. Pressure contours (CGR-VL) 

 
 

Fig. 52. Translational/rotational temperature 
contours (CGR-VL) 
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Fig. 53. Pressure contours (CGL-VL) 

 
 

 

Fig. 54. Translational/rotational temperature 
contours (CGL-VL) 

 
 

 

Fig. 55. Pressure contours (LGR-VL) 

 
 

 

Fig. 56. Translational/rotational temperature 
contours (LGR-VL) 

 
 

Fig. 57. Pressure contours (LGL-VL) 

 
 

Fig. 58 Translational/rotational temperature 
contours (LGL-VL) 

 
Figs. 63 to 66 show the pressure and 
temperature contours generated by the VL and 
LS numerical algorithms when using the CGL 
collocation points. There are some pre-shock 

oscillations in the VL solution, but good 
symmetry properties are observed in both 
solutions. The stagnation pressure estimated by 
the VL scheme as using CGL collocation points 
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is the best in comparison with the CGR, LGR, 
and LGL solutions, with an error of 3.88%. The 
temperature contours are shown in Figs. 65 and 

66 and both figures present good symmetry 
characteristics, without oscillations. 

 
REENTRY CAPSULE INVISCID SOLUTIONS 

 
 

Fig. 59. Pressure contours (CGR-VL) 

 
 

Fig. 60. Pressure contours (CGR-LS) 

 
 

Fig. 61. Translational/rotational 
temperature contours (CGR-VL) 

 
 

Fig. 62. Translational/rotational 
temperature contours (CGR-LS) 

 
Fig. 63. Pressure contours (CGL-VL) 

 
Fig. 64. Pressure contours (CGL-LS) 
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Fig. 65. Translational/rotational 
temperature contours (CGL-VL) 

 
 

Fig. 66. Translational/rotational 
temperature contours (CGL-LS) 

 
Figs. 67 to 70 exhibit the pressure and 
translational/rotational temperature contours 
calculated by the VL and LS algorithms as using 
the LGR collocation points. The values of 
stagnation pressure obtained by the numerical 
schemes are inferior to the theoretical value. As 
mentioned before, it seems that the Legendre 
variant behaves better for the temperature field 
and for the determination of the lift aerodynamic 
coefficient, as seen in Tables. 8 and 9. Good 
symmetry properties are observed in all solutions 
and free of oscillations. 
 

Figs. 71 to 74 show the pressure and 
translational/rotational temperature contours 
obtained by the VL and LS schemes as using the 
LGL collocation points. Both schemes capture 
correctly the normal shock wave ahead of the 
configuration nose. Moreover, the stagnation 
pressure values of both schemes are under-
predicted in relation to the theoretical value. 
Good symmetry properties are observed. Good 
homogenous properties are verified in the 
temperature solutions. The trailing edge flow is 
well captured by the numerical schemes, 
emphasizing the correct implementation of the 
Kutta condition. 
 
Viscous case: Figs. 75 and 76 exhibit the 
pressure and temperature contours calculated by 
the VL numerical scheme as using the CGR 
collocation points. The LS scheme did not 
converge. Good symmetry properties are 
observed. The dynamic and thermal shock 
waves are correctly captured by the VL 
algorithm. 
 

Figs. 77 to 80 show the pressure and 
translational/rotational temperature contours 

generated by the VL and LS schemes when 
using the CGL collocation points. The best result 
of the viscous case for the stagnation pressure 
was obtained by the CGL spectral variant with an 
error of 1.12%. Again, it seems that the 
Chebyshev variants present better behavior 
when applied to the dynamic part of the flow. 
Good symmetry properties are verified. Good 
homogenous properties are observed in both 
solutions. 
 
Figs. 81 to 84 present the pressure and 
temperature contours obtained by the VL and LS 
numerical schemes as using the LGR collocation 
points. The stagnation pressure values 
generated by the VL and LS schemes are under-
estimated in relation to the theoretical value. The 
contours are free of pre-shock oscillations and 
present good homogenous features. Figs. 83 and 
84 present the temperature contours. The normal 
thermal shock wave is well captured by the 
numerical algorithms. Good symmetry properties 
are observed and the wake is well captured by 
the numerical schemes, highlighting the correct 
implementation of the Kutta condition. 
 
Figs. 85 to 88 exhibit the pressure and 
temperature contours calculated by the VL and 
LS numerical algorithms when using the LGL 
collocation points. The stagnation pressure 
continues under-estimated. Good symmetry 
properties are verified. The temperature contours 
are free of oscillations, the wake is well captured 
by the numerical schemes, and good 
homogenous properties are noted. The normal 
thermal shock wave is well captured by the 
numerical schemes. 
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Fig. 67. Pressure contours (LGR-VL) 

 
 

Fig. 68. Pressure contours (LGR-LS) 

 
 

Fig. 69. Translational/rotational 
temperature contours (LGR-VL) 

 
 

Fig. 70. Translational/rotational 
temperature contours (LGR-LS) 

 
Fig. 71. Pressure contours (LGL-VL) 

 
Fig. 72. Pressure contours (LGL-LS) 

 

8.4 Other Comparisons 
 

Figs. 89 and 90 show the convergence histories 
of the VL and LS schemes, respectively, for a 5th 
order spectral method using CGL for collocation 
points compared with two ENO solutions also of 
5th order using Newton and Hermite interpolation 
functions, and a WENO solution also of 5

th
 order, 

to the blunt body inviscid case. The CGL 

collocation points were chosen because they 
provide the best convergence for the inviscid 
case and 5th order of accuracy. The ENO and 
WENO schemes were implemented by the first 
author and they were used for numerical 
comparisons. To details of the implementation of 
the ENO and WENO schemes, the reader is 
encouraged to read [33-35]. As can be seen in 
Fig. 89, the Spectral (CGL) method coupled with 
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the VL scheme was the most efficient converging 
in less than 300 iterations, with a maximum CFL 
of 0.70. In second place, was the ENO (Hermite) 
interpolation function coupled with the VL 
scheme with a maximum CFL of 0.70, and 
converging in less than 300 iterations too. The 
ENO and WENO schemes used a maximum CFL 
number of 0.10 and were very inefficient. Fig. 90 
compares the ENO solution of 5

th
 order using 

Newton and Hermite interpolation functions, and 
the Spectral (CGL) method, all of them coupled 
with the LS scheme. In this case, the superiority 
of the Spectral (CGL) method was very 
highlighted, converging in less than 400 
iterations, whereas the ENO (Hermite) 
converged in quasi 600 iterations. 
 
Figs. 91 and 92 exhibit the convergence histories 
of the VL and LS schemes, respectively, for a 4

th
 

order spectral method using LGL for collocation 
points compared with a ENO solution  also of 4

th
 

order using Newton interpolation function, to the 
blunt body viscous case. The LGL collocation 
points were chosen because they provide the 
best convergence for the viscous case and 4th 
order of accuracy. As can be seen in Fig. 91, the 
Spectral (LGL) method coupled with the VL 
scheme was the most efficient converging in less 
than 400 iterations, with a maximum CFL of 0.50. 
The ENO scheme used a maximum CFL number 
of 0.10 and was very inefficient. Fig. 92 
compares the ENO solution of 4th order using 
Newton interpolation function, and the Spectral 
(LGL) method, both of them coupled with the LS 
scheme. In this case, the superiority of the 
Spectral (LGL) method was very highlighted, 
converging in less than 400 iterations, whereas 
the ENO (Newton) converged in more than 2,800 
iterations. 
 

As conclusion, the correct implementation of the 
proposed spectral method conducted to an 
efficient high order scheme, converging in less 
than 400 iterations in both inviscid and viscous 
cases, when programmed coupled with the VL or 
LS schemes. The CGL and LGL variants of the 
spectral method were the most efficient in the 
studies performed by the first author and ratified 
the fast convergence as expected. 
 

8.5 Quantitative Analysis 
 

In order to perform a quantitative analysis, the 
present reactive results are compared to the 
perfect gas solutions. The stagnation pressures 
at the blunt body nose, at the double ellipse 
nose, and at the reentry capsule nose were 
evaluated assuming the perfect gas formulation. 

Such parameters calculated at this way are not 
the best comparison, but in the absence of 
practical reactive results, these constitute the 
best available solution. 
 

To calculate the stagnation pressure at the nose 
of these three configurations, [36] presents in its 
B Appendix values of the normal shock wave 
properties ahead of the configuration. The ratio 
pr0/pr∞ is estimated as function of the normal 
Mach number and the stagnation pressure pr0 
can be determined from this parameter. For the 
stagnation pressure, the value of pr∞ is 
determined by the following expression: 
 

2
charchar

initial

a

pr
pr


 ,                                       (15) 

 

where, for instance, to the blunt body case, prinitial 
= 687N/m

2
, char = 0.004kg/m

3
 and achar = 

317.024m/s. Considering these values, one 
concludes that pr∞ = 1.709 (non-dimensional). 
Using the ratio obtained from [36], to an initial 
Mach number of 8.78, the ratio pr0/pr∞ assumes 
the value 99.98, the stagnation pressure ahead 
of the configuration nose is estimated as 170.87 
unities. 
 

Hence, Table 5 gives the theoretical stagnation 
pressure value obtained for the three 
configurations at the initial-normal-Mach number. 
Tables 6 (inviscid case) and 7 (viscous case) 
compare values of the stagnation pressure 
obtained from the simulations with the theoretical 
values and show the percentage errors. In the 
double ellipse problem, only the VL scheme 
generated converged results. As can be seen, 
the best results in the inviscid case are provided 
by the Chebyshev-Gauss-Radau collocation 
points, with an error of 5.96%, when using the LS 
scheme, for the blunt body problem; by the 
Chebyshev-Gauss-Radau collocation points, with 
an error of 3.79%, when using the VL scheme, 
for the double ellipse problem; and by 
Chebyshev-Gauss-Lobatto collocation points, 
with an error of 3.88%, when using the LS 
scheme, for the reentry capsule problem. For the 
viscous case, the Chebyshev-Gauss-Lobatto 
collocation points, with an error of 1.31%, using 
the LS scheme, for the blunt body problem, was 
the best; the Chebyshev-Gauss-Radau 
collocation points, with an error of 0.23%, using 
the VL scheme, for the double ellipse problem, 
was the best; and the Chebyshev-Gauss-Lobatto 
collocation points, with an error of 1.12%, using 
the LS scheme, for the reentry capsule problem, 
was the best. 
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As the hypersonic flows along the blunt body and 
along the reentry capsule configurations were 
simulated with a zero value to the attack angle 
and the geometries are symmetrical in relation to 
y axis, a zero lift coefficient is the expected value 
for this aerodynamic coefficient. Tables 8 
(inviscid) and 9 (viscous) exhibit an analysis of 
the lift aerodynamic coefficient, based only on 
pressure contribution, for the blunt body and 
reentry capsule configurations, in this study. As 
can be observed, the best value to the lift 
coefficient in the inviscid case was obtained by 
the Legendre-Gauss-Radau collocation points, 
using VL scheme, for the blunt body problem; 
and again by the Legendre-Gauss-Radau 
collocation points, using VL scheme, for the 
reentry capsule problem. In the viscous case, the 
best value to the lift coefficient was obtained by 
the Legendre-Gauss-Lobatto collocation points, 
using LS scheme, for the blunt body problem; 
and by the Chebyshev-Gauss-Radau collocation 
points, using VL scheme, for the reentry capsule 
problem. 
 

Table 1. Values of Sx and Sy  
 

Surface Sx Sy 
i,j-1/2  

j,ij,1i
yy 


  

j,1ij,i
xx


  

i+1/2,j  j,1i1j,1i yy     
1j,1ij,1i

xx


  

i,j+1/2  
1j,1i1j,i

yy


   1j,i1j,1i xx    

i-1/2,j  
1j,ij,i yy    

j,i1j,i xx 
 

 
Table 2. Initial conditions to the blunt body 

problem 
 

Property Value 

Minitial 8.78 

initial 0.00326 kg/m
3
 

prinitial 687 Pa 

Uinitial 4,776 m/s 

Tinitial 694 K 

Altitude 40,000 m 

cN 10-9 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

LREF 2.0 m 

Rechar 2.386x10
6
 

 

8.6 Computational Performance 
 

Tables 10 and 11 present the computational data 
of the VL and LS schemes for the blunt body, for 
the double ellipse, and for the reentry capsule 

problems in both inviscid and viscous cases, 
respectively. It shows the CFL number and the 
number of iterations to convergence for all 
studied cases in the current work. It can be 
verified that the best performance of the VL 
scheme in the inviscid case occurred when using 
the CGL collocation points, employing a CFL of 
0.70, and converging in 239 iterations, in the 
blunt body problem, whereas in the viscous case 
occurred when using the LGL collocation points, 
employing a CFL of 0.30, and converging in 367 
iterations, also in the blunt body problem. On the 
other hand, the best performance of the LS 
scheme in the inviscid case occurred when using 
the LGR collocation points, employing a CFL of 
0.50, and converging in 320 iterations, in the 
blunt body problem, whereas in the viscous case 
occurred when using the LGR collocation points, 
employing a CFL of 0.30, and converging in 383 
iterations, also in the blunt body problem. 

 
Table 3. Initial conditions to the double 

ellipse problem 
 

Property Value 
Minitial 15.0 
initial 0.00922 kg/m

3
 

prinitial 794 Pa 
Uinitial 5,208 m/s 
Tinitial 300 K 
Altitude 50,000 m 
cN 10-9 
cO 0.07955 
cO2 0.13400 
cNO 0.05090 
LREF 5.0 m 
Rechar 1.574x106 

 
Table 4. Initial conditions to the reentry 

capsule problem 
 

Property Value 
Minitial 10.6 
initial 0.02863 kg/m

3
 

prinitial 3,885 Pa 
Uinitial 4,628 m/s 
Tinitial 473 K 
Altitude 40,000 m 
cN 10-9 
cO 0.07955 
cO2 0.13400 
cNO 0.05090 
LREF 3.0 m 
Rechar 3.468x106 

 
As final conclusion, it is possible to highlight that, 
for the blunt body problem, the LS scheme in the 
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viscous case using CGL collocation points had 
the best performance in estimating the 
stagnation pressure, and the lift aerodynamic 
coefficient was best estimated by the LS scheme 
as using the LGL collocation points; for the 
double ellipse problem, the VL scheme in the 
viscous case using CGR collocation points had 
the best performance in estimating the 
stagnation pressure; and finally, for the reentry 
capsule problem, the LS scheme in the viscous 
case using CGL collocation points had the best 
performance in estimating the stagnation 
pressure, and the lift aerodynamic coefficient 
was best estimated by the VL scheme as using 
the CGR collocation points. Moreover, the best 
performance of the numerical schemes, for the 
4

th
 order of accuracy, was due to the VL one, 

when using the CGL collocation points, 
employing a CFL of 0.70, and converging in 239 

iterations, in the blunt body problem, whereas for 
the 16

th
 order of accuracy, the best performance 

of the numerical schemes was due to the                   
LS one, when using the LGR collocation                
points, employing a CFL of 0.30, and converging 
in 383 iterations, also in the blunt body problem. 
 
Finally, to close this work, the computational cost 
of the numerical schemes using the several 
types of collocation points is presented in Table 
12. For the inviscid case, the cheapest 
combination was the VL scheme using LGL 
collocation points with a cost of 0.00006974 
sec/per-volume/per-iteration, whereas for the 
viscous case the cheapest was due to the LS 
scheme coupled with the LGR collocation points 
with a cost of 0.00017830 sec/per-volume/per-
iteration. 

 
Fig. 73. Translational/rotational 
temperature contours (LGL-VL) 

 
 

Fig. 74. Translational/rotational 
temperature contours (LGL-LS) 

 
REENTRY CAPSULE VISCOUS SOLUTIONS 

 
Fig. 75. Pressure contours (CGR-VL) 

 
Fig. 76. Translational/rotational temperature 

contours (CGR-VL) 
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Fig. 77. Pressure contours (CGL-VL) 

 
 

Fig. 78. Pressure contours (CGL-LS) 

 
 

Fig. 79. Translational/rotational 
temperature contours (CGL-VL) 

 
 

Fig. 80. Translational/rotational 
temperature contours (CGL-LS) 

 
 

Fig. 81. Pressure contours (LGR-VL) 

 
 

Fig. 82. Pressure contours (LGR-LS) 
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Fig. 83. Translational/rotational 
temperature contours (LGR-VL) 

 
 

Fig. 84. Translational/rotational 
temperature contours (LGR-LS) 

 

 
Fig. 85. Pressure contours (LGL-VL) 

 
Fig. 86. Pressure contours (LGL-LS) 

 
 

Fig. 87. Translational/rotational 
temperature contours (LGL-VL) 

 

 
 

Fig. 88. Translational/rotational 
temperature contours (LGL-LS) 

 
 

Fig. 89. Convergence histories – Inviscid 
case (VL) 

 
 

Fig. 90. Convergence histories – Inviscid 
case (LS) 
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Fig. 91. Convergence histories – Viscous 
case (VL) 

 
 

Fig. 92. Convergence histories – Viscous 
case (LS) 

 
Table 5. Values of theoretical stagnation pressure 

 

Problem: Minitial: pr0/pr∞: pr∞: pr0 (Theoretical): 

Blunt body 8.78 99.98 1.709 170.87 

Double ellipse 15.00 290.20 7.109 2,063.03 

Reentry capsule 10.60 145.46 9.664 1,405.73 
 

Table 6. Values of stagnation pressure and respective errors (Inviscid case/4
th

 Order) 
 

Physical problem: Scheme: Spectral method: pr0: (Numerical) Error: 

 VL
(1)

 Chebyshev-Gauss-Radau 139.22 18.52 

 LS
(2)

 Chebyshev-Gauss-Radau 160.69 5.96 

 VL Chebyshev-Gauss-Lobatto 140.64 17.69 

Blunt Body LS Chebyshev-Gauss-Lobatto 145.08 15.09 

(pr0 = 170.87) VL Legendre-Gauss-Radau 98.88 42.13 

 LS Legendre-Gauss-Radau 121.09 29.13 

 VL Legendre-Gauss-Lobatto 109.51 35.91 

 LS Legendre-Gauss-Lobatto 127.29 25.50 

 VL Chebyshev-Gauss-Radau 1,984.91 3.79 

 LS Chebyshev-Gauss-Radau - - 

 VL Chebyshev-Gauss-Lobatto 1,702.57 17.47 

Double Ellipse LS Chebyshev-Gauss-Lobatto - - 

(pr0 = 2,063.03) VL Legendre-Gauss-Radau 1,372.91 33.45 

 LS Legendre-Gauss-Radau - - 

 VL Legendre-Gauss-Lobatto 1,475.23 28.49 

 LS Legendre-Gauss-Lobatto - - 

 VL Chebyshev-Gauss-Radau 1,484.81 5.63 

 LS Chebyshev-Gauss-Radau 1,488.28 5.87 

 VL Chebyshev-Gauss-Lobatto 1,305.58 7.12 

Reentry Capsule LS Chebyshev-Gauss-Lobatto 1,351.25 3.88 

(pr0 = 1,405.73) VL Legendre-Gauss-Radau 1,030.82 26.67 

 LS Legendre-Gauss-Radau 1,160.72 17.43 

 VL Legendre-Gauss-Lobatto 1,097.93 21.90 

 LS Legendre-Gauss-Lobatto 1,201.89 14.50 
(1): Van Leer; (2): Liou and Steffen Jr. 
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Table 7. Values of stagnation pressure and respective errors (Viscous case/16
th

 Order)  
 

Physical problem: Scheme: Spectral method: pr0: 
(Numerical) 

Error: 

 VL Chebyshev-Gauss-Radau 184.50 7.98 
 LS Chebyshev-Gauss-Radau 176.56 3.33 
 VL Chebyshev-Gauss-Lobatto 177.23 3.72 
Blunt Body LS Chebyshev-Gauss-Lobatto 173.10 1.31 
(pr0 = 170.87) VL Legendre-Gauss-Radau 131.98 22.76 
 LS Legendre-Gauss-Radau 145.46 14.87 
 VL Legendre-Gauss-Lobatto 132.32 22.56 
 LS Legendre-Gauss-Lobatto 145.67 14.75 
 VL Chebyshev-Gauss-Radau 2,058.34 0.23 
 LS Chebyshev-Gauss-Radau - - 
 VL Chebyshev-Gauss-Lobatto 1,977.64 4.14 
Double Ellipse LS Chebyshev-Gauss-Lobatto - - 
(pr0 = 2,063.03) VL Legendre-Gauss-Radau 1,506.36 26.98 
 LS Legendre-Gauss-Radau - - 
 VL Legendre-Gauss-Lobatto 1,510.16 26.80 
 LS Legendre-Gauss-Lobatto - - 
 VL Chebyshev-Gauss-Radau 1,516.74 7.90 
 LS Chebyshev-Gauss-Radau - - 
 VL Chebyshev-Gauss-Lobatto 1,463.37 4.10 
Reentry Capsule LS Chebyshev-Gauss-Lobatto 1,421.50 1.12 
(pr0 = 1,405.73) VL Legendre-Gauss-Radau 1,111.07 20.96 
 LS Legendre-Gauss-Radau 1,213.24 13.69 
 VL Legendre-Gauss-Lobatto 1,113.83 20.77 
 LS Legendre-Gauss-Lobatto 1,214.90 13.58 

 
Table 8. Values of the lift aerodynamic coefficient (Inviscid case/4

th
 Order)  

 
Physical problem: Scheme: Spectral method: cL: 
 VL Chebyshev-Gauss-Radau 4.1766x10-14 
 LS Chebyshev-Gauss-Radau 2.6970x10

-14
 

 VL Chebyshev-Gauss-Lobatto -2.2093x10-15 
Blunt Body LS Chebyshev-Gauss-Lobatto -4.3648x10

-14
 

 VL Legendre-Gauss-Radau 8.2827x10
-16

 
 LS Legendre-Gauss-Radau 1.2645x10-14 
 VL Legendre-Gauss-Lobatto 1.1761x10

-14
 

 LS Legendre-Gauss-Lobatto 2.1764x10-14 
 VL Chebyshev-Gauss-Radau -2.1896x10

-9
 

 LS Chebyshev-Gauss-Radau 9.4338x10-10 
 VL Chebyshev-Gauss-Lobatto -1.0423x10-9 
Reentry capsule LS Chebyshev-Gauss-Lobatto 4.6425x10

-10
 

 VL Legendre-Gauss-Radau 4.3942x10-11 
 LS Legendre-Gauss-Radau -9.2069x10

-11
 

 VL Legendre-Gauss-Lobatto -5.3471x10-11 
 LS Legendre-Gauss-Lobatto 5.6322x10

-11
 

 
Table 9. Values of the lift aerodynamic coefficient (Viscous case/16th Order) 

  
Physical problem: Scheme: Spectral method: cL: 
 VL Chebyshev-Gauss-Radau 2.3130x10

-15
 

 LS Chebyshev-Gauss-Radau 2.5299x10-14 
 VL Chebyshev-Gauss-Lobatto 6.9929x10

-15
 

Blunt Body LS Chebyshev-Gauss-Lobatto 2.1638x10-14 
 VL Legendre-Gauss-Radau -8.9717x10-16 
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Physical problem: Scheme: Spectral method: cL: 
 LS Legendre-Gauss-Radau -2.0814x10-15 
 VL Legendre-Gauss-Lobatto 8.4745x10

-16
 

 LS Legendre-Gauss-Lobatto 1.6422x10-16 
 VL Chebyshev-Gauss-Radau -6.6822x10

-12
 

 LS Chebyshev-Gauss-Radau - 
 VL Chebyshev-Gauss-Lobatto -1.1925x10-11 
Reentry Capsule LS Chebyshev-Gauss-Lobatto 1.5878x10

-3
 

 VL Legendre-Gauss-Radau -3.9489x10-11 
 LS Legendre-Gauss-Radau -1.4035x10

-4
 

 VL Legendre-Gauss-Lobatto -4.8359x10-11 
 LS Legendre-Gauss-Lobatto -1.3768x10-4 

 
Table 10. Computational data (Inviscid case/4th Order)  

 
Physical problem: Scheme: Spectral method: CFL: Iterations: 
 VL Chebyshev-Gauss-Radau 0.70 404 
 LS Chebyshev-Gauss-Radau 0.70 378 
 VL Chebyshev-Gauss-Lobatto 0.70 239 
Blunt Body LS Chebyshev-Gauss-Lobatto 0.70 344 
 VL Legendre-Gauss-Radau 0.50 241 
 LS Legendre-Gauss-Radau 0.50 320 
 VL Legendre-Gauss-Lobatto 0.50 242 
 LS Legendre-Gauss-Lobatto 0.50 352 
 VL Chebyshev-Gauss-Radau 0.10 2,987 
 LS Chebyshev-Gauss-Radau - - 
 VL Chebyshev-Gauss-Lobatto 0.20 974 
Double Ellipse LS Chebyshev-Gauss-Lobatto - - 
 VL Legendre-Gauss-Radau 0.20 519 
 LS Legendre-Gauss-Radau - - 
 VL Legendre-Gauss-Lobatto 0.20 590 
 LS Legendre-Gauss-Lobatto - - 
 VL Chebyshev-Gauss-Radau 0.30 1,027 
 LS Chebyshev-Gauss-Radau 0.30 1,122 
 VL Chebyshev-Gauss-Lobatto 0.30 814 
Reentry Capsule LS Chebyshev-Gauss-Lobatto 0.30 917 
 VL Legendre-Gauss-Radau 0.10 1,748 
 LS Legendre-Gauss-Radau 0.10 2,791 
 VL Legendre-Gauss-Lobatto 0.10 2,819 
 LS Legendre-Gauss-Lobatto 0.10 3,077 

 
Table 11. Computational data (Viscous case/16

th
 Order)  

 
Physical problem: Scheme: Spectral method: CFL: Iterations: 
 VL Chebyshev-Gauss-Radau 0.50 560 
 LS Chebyshev-Gauss-Radau 0.50 506 
 VL Chebyshev-Gauss-Lobatto 0.50 501 
Blunt Body LS Chebyshev-Gauss-Lobatto 0.50 468 
 VL Legendre-Gauss-Radau 0.30 432 
 LS Legendre-Gauss-Radau 0.30 383 
 VL Legendre-Gauss-Lobatto 0.30 367 
 LS Legendre-Gauss-Lobatto 0.30 386 
 VL Chebyshev-Gauss-Radau 0.05 11,203 
 LS Chebyshev-Gauss-Radau - - 
 VL Chebyshev-Gauss-Lobatto 0.10 4,914 
Double Ellipse LS Chebyshev-Gauss-Lobatto - - 
 VL Legendre-Gauss-Radau 0.08 3,208 
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Physical problem: Scheme: Spectral method: CFL: Iterations: 
 LS Legendre-Gauss-Radau - - 
 VL Legendre-Gauss-Lobatto 0.08 3,105 
 LS Legendre-Gauss-Lobatto - - 
 VL Chebyshev-Gauss-Radau 0.10 4,435 
 LS Chebyshev-Gauss-Radau - - 
 VL Chebyshev-Gauss-Lobatto 0.10 3,986 
Reentry Capsule LS Chebyshev-Gauss-Lobatto 0.10 4,052 
 VL Legendre-Gauss-Radau 0.09 2,012 
 LS Legendre-Gauss-Radau 0.10 2,410 
 VL Legendre-Gauss-Lobatto 0.09 2,023 
 LS Legendre-Gauss-Lobatto 0.10 2,422 

 
Table 12. Computational cost of spectral variants 

 
Order of 
accuracy: 

Scheme: Spectral method: Computational cost 
(Seconds/volumes/iterations): 

 VL Chebyshev-Gauss-Radau 0.00007092 
 LS Chebyshev-Gauss-Radau 0.00007164 
 VL Chebyshev-Gauss-Lobatto 0.00007061 
4th Order LS Chebyshev-Gauss-Lobatto 0.00007073 
(Inviscid case) VL Legendre-Gauss-Radau 0.00007002 
 LS Legendre-Gauss-Radau 0.00006991 
 VL Legendre-Gauss-Lobatto 0.00006974 
 LS Legendre-Gauss-Lobatto 0.00007024 
 VL Chebyshev-Gauss-Radau 0.00018502 
 LS Chebyshev-Gauss-Radau 0.00018150 
 VL Chebyshev-Gauss-Lobatto 0.00017939 
16

th
 Order LS Chebyshev-Gauss-Lobatto 0.00018114 

(Viscous case) VL Legendre-Gauss-Radau 0.00017988 
 LS Legendre-Gauss-Radau 0.00017830 
 VL Legendre-Gauss-Lobatto 0.00018073 
 LS Legendre-Gauss-Lobatto 0.00018505 

 

9. CONCLUSIONS 
 
In the present work, a study involving a spectral 
method to solve the reactive Euler and Navier-
Stokes equations was performed. The Euler and 
Navier-Stokes equations, in conservative and 
finite volume contexts, employing structured 
spatial discretization, on a condition of chemical 
non-equilibrium, were studied. The spectral 
method presented in this work employed 
collocation points and variants of Chebyshev and 
Legendre interpolation functions were analyzed. 
High-order studies were performed to verify the 
accuracy of the spectral method. The “hot gas” 
hypersonic flows around a blunt body, around a 
double ellipse, and around a reentry capsule in 
two-dimensions were performed. The [19-20] flux 
vector splitting algorithms were applied to 
accomplish the numerical experiments. The 
Euler backward integration method was 
employed to march the schemes in time. The 
convergence process was accelerated to steady 
state condition through a spatially variable time 

step procedure, which has proved effective gains 
in terms of computational acceleration (see [21-
22]). The reactive simulations involved Earth 
atmosphere chemical model of five species and 
seventeen reactions, based on the [23] model. N, 
O, N2, O2, and NO species were used to perform 
the numerical comparisons. The results have 
indicated that the Chebyshev collocation point 
variants are more accurate in terms of stagnation 
pressure estimations, whereas the Legendre 
collocation point variants are more accurate in 
terms of the lift coefficient estimations. Moreover, 
the Legendre collocation point variants are more 
computationally efficient and cheaper. 
 
As final conclusion, it is possible to highlight that, 
for the blunt body problem, the [20] scheme in 
the viscous case using Chebyshev-Gauss-
Lobatto collocation points had the best 
performance in estimating the stagnation 
pressure, and the lift aerodynamic coefficient 
was best estimated by the [20] scheme as using 
the Legendre-Gauss-Lobatto collocation points; 
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for the double ellipse problem, the [19] scheme in 
the viscous case using Chebyshev-Gauss-Radau 
collocation points had the best performance in 
estimating the stagnation pressure; and finally, 
for the reentry capsule problem, the [20] scheme 
in the viscous case using Chebyshev-Gauss-
Lobatto collocation points had the best 
performance in estimating the stagnation 
pressure, and the lift aerodynamic coefficient 
was best estimated by the [19] scheme as using 
the Chebyshev-Gauss-Radau collocation points. 
Moreover, the best performance of the numerical 
schemes, for the 4th  order of accuracy, was due 
to the [19] one, when using the Chebyshev-
Gauss-Lobatto collocation points, employing a 
CFL of 0.70, and converging in 239 iterations, in 
the blunt body problem, whereas for the 16

th
 

order of accuracy, the best performance of the 
numerical schemes was due to the [20] one, 
when using the Legendre-Gauss-Radau 
collocation points, employing a CFL of 0.30, and 
converging in 383 iterations, also in the blunt 
body problem. 
 
Finally, to close this work, the computational cost 
of the numerical schemes using the several 
types of collocation points was presented in Tab. 
12, for a Core i7 processor of 2.1GHz and 
8.0Gbytes of RAM microcomputer, in a Windows 
7.0 environment. For the inviscid case, the 
cheapest combination was the VL scheme using 
Legendre-Gauss-Lobatto collocation points with 
a cost of 0.00006974 sec/per-volume/per-
iteration, whereas for the viscous case the 
cheapest was due to the LS scheme coupled 
with the Legendre-Gauss-Radau collocation 
points with a cost of 0.00017830 sec/per-
volume/per-iteration. 
 

10. MOTIVATION AND NOVELTY 
 
The motivation to study spectral methods applied 
to reentry flow was enormous because of some 
papers in the CFD literature reporting for such 
methods as the state of art of high order 
resolution. The intention of this paper was to 
propose a different spectral method that was of 
easy implementation and conformed about first 
author’s ideas of treating the governing 
equations of fluid flow. The formulation presented 
here is for a chemical non-equilibrium condition 
and a one-temperature model. The comparisons 
involving the residual histories of ENO, WENO, 
and spectral method were very important to 
confirm that our numerical implementation was 
correct and also the potentiality of the method. 
Three physical problems were also a challenge 

that we accept to lead with. The results with good 
accuracy represent a motivation to extend the 
present formulation to more species and different 
chemical conditions. 
 
The novelty of the present study was to 
implement this different spectral method to treat 
chemical non-equilibrium reentry flows and to 
formulate the appropriate equations for accept 
this method. The robustness and convergence 
features of this spectral method are very 
impressive. While the first author had to use CFL 
numbers of order 0.10 for his ENO/WENO 
explicit methods, CFL numbers as great as 0.70 
for his explicit spectral method were of common 
use. The proposed spectral method is different 
from the standard spectral ones on a sense that 
in the latter, the differential equations and the 
solution method are discretized with spectral 
tools, whereas in the former, only the vector of 
conserved variables and the convective fluxes 
should be discretized according to the spectral 
tools. The result is a robust and fast solver to 
treat the fluid-dynamic of reentry flows. 
 

11. FUTURE WORKS 
 

For the future, the authors should extend the 
present formulation for a five species chemical 
model under the condition of thermochemical 
non-equilibrium in two-dimensions. After that, 
they should extend to seven and eleven species 
in two-dimensions until to arrive to the desired 
three-dimensional studies. Moreover, its 
implementation with turbulence effects and 
magnetic field actuation, that the first author 
consider as the state of the art project, is an 
objective to be reached, in both, two- and three-
dimensions. For the cases where turbulence will 
be studied, the authors will follow the formulation 
described in [37-40], and for the magnetic field 
actuation the works of [39-43] will be employed. 
Finally, the interpretation of the present 
formulation to two-dimensional unstructured 
studies is also a goal to be reached. 
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