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Abstract

Aims: A shape optimization technique is developed, using the boyrelament method, for twqg
dimensional anisotropic structures to study the effecnafotropy on the displacements and stregses,
then minimize weight while satisfying certain constraumsn stresses and geometry.

Study Design: Original Research Paper.

Place and Duration of Study: Jamoum University College, Mathematics Department, betweae
2016 and July 2017.

Methodology: The shape design sensitivity analysis of a two-dinoeradianisotropic structure using| a
singular formulation of the boundary element method is ifgetstd to study the effects of anisotropy jon
the displacements and stresses. An Implicit differentiggahnique of the discretized boundary integral
equations is performed to produce terms that contain deggadf the fundamental solutions employed
in the analysis. This technique allows the coupling betwegtimization technique and numeriqal
boundary element method (BEM) to form an optimum shapgmedgorithm that yields shape design
sensitivities of the displacement and stress fieldsafisotropic materials with very high accuracy. The
fundamental solutions of displacements and tractions instexihncomplex variables employed in the
analysis. The feasible direction method was developedrapiginented for use with the golden-sect(on
search algorithm based on BEM as a numerical optimizaéohnique for minimizing weight while
satisfying all of the constraints.

*Corresponding author: E-mail: mohamed_fahmy@cizsedu.eg;
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Results: The propose method has be:verified by using the tw-dimensional plate with an eIIipticl
hole as the numerical example. The numerical results shatvthe proposed method is suitable and
effective tool for the computer implementation of the sotut
Conclusion: From the research that has been performed, it is possibtattude that the optimal shape
of the two-dimensional plate with an elliptical holecisicial when elastic field is sensitive to boundary
shape. Also from this knowledge of the effects of anisotrapyhe displacements and stresses, we|can
design various anisotropic structures to meet specifimergng requirements and utilize within which
to place new information can be more effective.

Keywords: Shape optimization; design sensitivity; impliditecentiation method; anisotropic structures;
boundary element method.

2010 Mathematics subject classification: 65M38 - 65K05- 74B05 - 74E05 -74F05 - 74H05 - 74H15 -
74S20-90C31.

1 Introduction

The rapid development of composite materials followingewvarieties of techniques and the design and
manufacturing technologies is one of the most significant aahients in the field of materials engineering
and science. Because of their high stiffness and high strpragjibrties, composites are the most commonly
used in mechanical engineering and aerospace applicatiéfs [1-

In recent years, the scientific research in the fieldoptimization algorithms has become a rapidly
developing area of research in computational optimizatidmtgques [6-8].

Numerical techniques are also increasingly used for a@rabjsstructural engineering, among which the
boundary element technique [9-19], which offers a clear adgarver other methods, and is applicable to
a wide range of structural engineering problems. Theysbdi anisotropic structures is very complex and is
still not well understood, and as a result, more sophistit strategies for optimal design of anisotropic
structure are in demand [20-25].

2 Formulation of the Problem

The equilibrium equation for anisotropic elasticity

where there are 21 independent material elastic coaglgptbecause;;,; = Cjy; = Cijix = Cyy;;- Due to
the symmetry of the stress and strain tensors, and asgstimait the material is symmetric with respect to the
zdirection which is perpendicular to— y plane, the two-dimensional stress-strain relations fmepbktress
anisotropic elasticity are

Exx dyy diz dig][%xx
[gyy] = [dlz da; dza] [Uyy] )
Exy dig dye deel L%y

whereo;; ande; (i,j = x,y) are the stress and strain components, respectidglyare the elastic
compliances coefficients, which can be written in teafslastic constants as follows
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The coefficients of mutual influence of the first amdand kinds, respectively
d,sd
Cpq:dpq_%' p.q=126
33
Vp3 1 M23 7312
dyg=—2 dog = —, dgy = —22 =22 4
p3 Ep 33 E; 63 E; Ly €))
The strain compatibility equation is
d%e 9% 9%
;1 iz =2 12 (5)
0x; 0xi 0x,0x,

The equilibrium equation is automatically satisfied bitimg the stresses in terms of derivatives of the Airy
stress functiom (x4, x,) proposed by Airy [26] as

_d%¢ % 9% .
T = dx2 1022 = dx? 1012 = 0x,0x, (6)
Now by combining equations (2), (5) and (6), the governing emuétir the two-dimensional anisotropic
elasticity can be obtained as

4 4 4 4 4
It is convenient to define the operafor(s = 1,4) as follows
0 d
fs = o, % ax, ®
equation (7) may be reexpressed in the following form
fifafsfa(@) =0 €))
whereG, are the four roots of the following characteristic equrati
[dyy — 2Gdy + (2d15 + dgg)G? — 2d,4G3 + dy1G*] ¢ =0 (10)

dz*

Lehknitskii [27] has proved that, for an anisotropic elastaterial, these roots are distinct and should be
purely imaginary or complex and they can be denoted by

Gy =a, +ib;,G, =a, +iby,G3 =G, ,G, =G, (11)
wherea; andb; (j = 1,2) are real constants,=v—1 and the overbar is complex conjugate. Thus, the
stresses and displacements in an anisotropic elastic magybe expressed in terms of the complex
coordinateg; = x; + G;x, and their complex conjugates
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Also, the strains can be written in terms of the s&®&s non-principal coordinate system of laminae as [28]

Exx diy diz  dig]| [Oxx
[EW = d1z dzz dze[ ] (12)

< -
4 16 d26 d66

Where the transformed compliances are

dy; =9 + 9, cos 29 + 95 cos 4o (13a)
dy, = 9, — 95 cos 4o (13b)
dyy = 0; — 9, cos 20 + 95 cos 4o (13¢)
dy¢ = 9, sin 20 + 29; sin 4o (13d)
d,s = 9, sin 20 — 29; sin 4p (13e)
des = 2(9; — 9,) — 493 cos 4o 135)

in which the invariant§9,, 9,, 95, 9,) are

1
191 = §(3d11 + 3d22 + 2d12 + d66) (14(1)
1
Y, = E (d11 - dzz) (14b)
1
U3 = g(dn +dyy — 2d1; — deg) (14¢c)
1
Uy = g(dn + dyp + 6d1; — deg) (14d)

3 Numerical | mplementation

According to the Betti's reciprocal theorem, we assumatst;, e;; anday;, ef; represent two different types
of stresses and strains which satisfy equilibrium, gatibility and Hooke’s law. Hence

f O'Ue dR = f O'ij'eij dR (15)
R R

the unstarred quantities are supposed to represent theowmksolution, and the starred quantities
correspond to a singular fundamental solution to Navier's Eguaassociated with a point load in an
infinite domain, which after performing integration by pawsceé and applying the divergence theorem,
leads to thdollowing somigliana displacement identity (Cruse [29])

w(®) = f £ (U (€, mds(n) — f 1w (T, (€, mds(n) (16)

N

The displacements and tractions fundamental solutions grectaly as follows:
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Ui (€,n) =mx {(3 —4v94;;In (%) +r_ir,j} a7
Ti;(§m) = —ﬁe) X {g—; 1 —2v)6; + 27‘,1'7‘,1}

-(1- 2v')(njr_i — nir,j) (18)

wherer = || — n|| is the Euclidean distance between the load go#at(¢,, &,) and the field poing =
(xler)

r={(—&)(x; — fi)}l/z (19)

The derivatives of (¢, 1) with respect to the field point coordinates and the moimal vector at the field
point are as follows

_or 1 . or 20
r,i—a_xi—;(xi_fi)__a_fi (20)
or or 21
an ox, " 1)

The boundary integral equation in the
um(§) = j tm (M) Unn (§,m)ds (1) —f U (M Ty (§, M) ds () (22)

N N

The boundary integral equation resulting from the direct boundkyent formulation for anisotropic
structures, may be written as

Dyt (€) + f Tyn (&)U (M ds () = f Ui (6, 1t ()l () @3)

N N

whereé (&,,&,) andn = (x,y) are the load and field points, respectivély,,(¢,n7) andT,,,(¢,n) are the
fundamental solutions which represent the displacementsauotibhs, respectively,

The coefficienD,,,, depends on the local geometry of the boundaéy atich lies on the smooth surface
or a sharp cornem,n = 1, 2.

4 Shape Design Sensitivity Analysisof 2D Anisotropic Structures

Implicit differentiation of the boundary integral equation)(28th respect to the design variabig yields
the following equation [25]

0um(§) | 0Dmy

2 S, 6)
aTmn (f: 77) aum (77)
(T ) + T 5 st
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d
f T (MU (1) =2 ——= e s(n))
aUmn ’ m
- [ (PE )+ e 2 a5t
s Xn

( (hn)) (24)

fs Uy (€ 1) ()

my, is the unit vector in the tangential direction to the s@faandm,,, is the unit vector in the normal
direction to the surface, let,, t,,, &,, ando,,, be the displacements, tractions, strains and stresses,
respectively.

The tangential displacement is
am(f) = Nc(f)ufnmln
and the tangential strain is

dN°(§) N 1
dé S0

The gradients of the tangential strain may be writtefolimvs

XX (f)

05 _dN@0us, 1 dNQ) 9y 1
Oxn | dE ox, I T dE ™ ox, JG)
LKG) -1 3] o5

T L Te P P

The fundamental solutions can be written in a more corioise by introducing the following complex
variables:

2 ==&+ 6 —-¢) (26a)

Z,=(x—&) + G,y — &) (26b)

In terms of above complex variables the fundamental solut@rdigplacements and tractions, respectively,
may be written in the following form:

Uj = 2Re[r1mA]-1 In(z,) + 1r2mAj2 ln(zz)], 27
G2A G2A G, A G,A
Ty = 2n1Re[ Ly 2 '"2] - 2n2Re[ rm o 2m mz] (28)
21 Z3 Z3
GiAm  G,A A
Tpnp = —2n,Re [ﬂ + ﬂ] + anRe mlyom2 (29)
Z1 Z3 Z2

According tox —y coordinate system, the, are the outward unit normal componentspand the
constants;,,,, are
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Tim = d11Gh + dip — di6Gm, Tom = d12Gm + d22 /Gy — das (30)
andA4,,,, are complex constants that can be determined from tlogviog matrix equations

_Re{Aml}]
Im{A,,} |
Re{Amz}J
-lm{AmZ}

[Im{B;} Re{B;} Im{B,} Re{B,}]

m=1,2 (31a)

B={ tn "m 7T} n=12 (31b)
For further details, we refer the reader to Cruse [29]

According to the numerical procedure for the boundary elenmepiementation of Fahmy [30-33], we
obtain from equation (23) the following system of linear algiebequations which has to be solved using
any of the standard matrix reduction techniques to obtainrtkeown displacements and tractions at the
boundary as:

AU = B (32)

whereA andB are the matrices that contain evaluated integraiseofundamental displacement and traction
kernels, respectively

Let m,,, is the tangential unit vector to the surface ang is the normal unit vector to the surface. Lgt,
omns Emn @ndt,, are, respectively, the displacements, stresseq)stai tractions in the local coordinates.

The tangential displacement is
ﬁm(f) = Nc(f)urcnmln (33)
whereN¢(§) (¢ =1,2,3)

and tangential strain is

Exx (E) =" B34

In the local coordinates the stress components can be tattblausing the constitutive equation (2)
The derivatives with respect to a design variahl€éh = 1, 2) for anisotropic materials will be as follows:

U
dxy,

0
= 2 [Re(ru A IN(21) + TagAma In(2)] (35)
h
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aT, G?A G2A G?A G2A on
mil ana [ ( 1 m1 2 m2>] +2Re< 14imi1 + 2 m2>_1
Xn

dxy, zZ; Zy 7 Z, dxp,
G,A G,A G A G,A on
—an—[Re( 1m1 | 72 mz)] _ 2Re< 1m0z mz)_z (36)
0xy, VA Z, VA z, /Jox,
T, G1A G,A G, A GyA4,5\ On
m2 _ —2n, [R < mi | b2 mz)] _ 2Re< im1 G2 mz) 1
dx, 0xy, 7 Z, VA z, /) O0x,
A, Apy Az 01,
+2 [R <—+—)]+2R ( = +—)— 37
"2 5 0xy, € Z, VA 0xy G7
To compute the previous derivatives, the complex \sih(ezj) andi may be written as follows
J
. 1z
ln(zj) = ln|zj| + Larg(zj), —=— (38)
75z
It is convenient to introduce the following real functions
A= — &)+ (x — &) (39)
Ay = (g — &)+ (x; — &) (40)
¥y = —B1§; + Bixz (41)
Wy = =282 + Baxz (42)
The complex coordinates and their complex conjugates camitben in the following form

By substituting from equations (38-43) into equations (35-3¥phbtain

0Upmn
6xh

= ZRe(Tn1Am1) [ln|Z1|] + ZRe(rmAmﬂ) [arg(zl)]

+2Re(rn2Amz) 0 [1n|z2|]+2Re(rnzAmzo 0 " farg(a)] (49

dxy, VA z, |0x, 7 z, /0xy

oT, G2A G2A on GA G,A on
ml:ZRe[ 1Ami , G2 mz]—l—ZRe( 1im1 , G2 mZ)_Z

M Y
+2n,Re(G? A1) 5— (I IZ) + 2n,Re(—G? Apal) 35— ( 1)
1

|z, ]2

, d /A, v,
+2n,Re(GZApm,) — ox, (|Z B )+2n1Re( G2 mzz) (|Z |2)
2 2

0 (M b
2R 5 (1) - 2naRe-Gut 3 (5)

a [ A, v,
—anRe(GzAmz)ax <| |2) 2n,Re(—G,A 21) (| |2> (45)
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= —2R
dxy, € zZ; Z,

0T, G1Am: n GzAmz] % + 2Re <Am1 AmZ) ZZZ
n

Xn 21

o /A NS
—27’l1R€(G1Am1) E<|lez) - anRe(_GlAml l)a_xh (llez)

a [ A, v,
—anRe(GzAmz)a—xh<—|Z E ) 2n,Re(—G,A mzz) <| |2)
2 z

A v,
+2n2Re(Am1) (| |2) + 2n,Re(— Amll) <|Z |2)
Z 1

0

A ¥
+2n,Re[A, ]axh <|22|2)+ 2n;Re(=Amai) 5— (I zzlz) (46)

Thus, the design sensitivity analysis is performedniylicit differentiation of equation (32) that describes
the structural response with respect to the design varigblekich are the coordinates of several nodes on
the movable part of the boundary

0A ou 0B 47
dxp, dx,  0xp 47
Which may be expressed in the following form
ou (GIB d0A ) 48
dx, \dx, Ox, (48)

This is a set of linear algebraic equations to comggeihknown displacement and traction gradients. After
obtaining the displacement sensitivity, the stress Beitisican be obtained.

The tangential strain’s sensitivity can be obtained bigifitiating equation (34) as follows

a‘;'Txx _ dNC(E) auz 1 dN (E) Bmln 1

oy~ dE ox O T T & " om J©
AN (@) ~1 ay©)]

u$, 49
i GEOF ox, “%
The elastic compliance can be computed as the straigyeokthe structure
1
E, = —f tUmds (50)
2 S

If the structure’s boundary is discretized i@@uadratic boundary elements. Then, the elastic compliance
can be computed as

Q
1
=30 [ EON @R ON @V o
b=1"5b

After the displacements, stresses, tractions and deeisitivities are evaluated, the sensitivities afs&t
compliance with respect to the boundary point coordinajesan also be calculated by implicit
differentiation method as follows
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Ne() + t; (f)

@)] [[ud, ()N (§)dé]

xh dh

d(f)

ZZ f N[ +uo

xJ(©dt +3 Z f [E5EON @) e ON (] 2 52)

5 Numerical Shape Optimization of 2D Anisotropic Structures

let R be a closed bounded plane region whose bourdaoysisting of a finite number of smooth curves and
assuming thatn andw are continuous functions and have continuous partial derigatiith respect ta,
andx,

ﬂ %, axz dxdx, = J (mdx; +w dx,) (53)

By using the Green's theorem, the afieaf the domairR (/f = I, dxldxz) can be written in terms of a
line integral over the boundary

_ 1
A= EJ (x1 dxz — X dxl) (54‘)
c

If the boundary of the structure is discretized i@tquadratic isoparametric boundary elements, and the
coordinates at nodal points can be expressed as

xm(§) = N°(Oxp (55)

whereN¢(§) quadratic shape function corresponding toctiiequadrilateral element's node number, &nd
is the intrinsic coordinate for the element. Thereftire,area of the domain can be calculated as follows

Q
o1 !
4= Ez f_l[xl@nl + 20,1 (©)dé (56)

J(&) is the Jacobian matrix of the transformation apéndn, are direction cosines of the unit normal
vector to the surface of the structure which may baemras

_dx,  dxy/dE  dx,/dE

T ST VA [ (b7e)
__dn __dn/df _ dxi/d§
S Sy VAN (3 ©70)
Substitution of equations (57) into equation (56) yields
i 1§ [ [n©%2 - & ar (59)
== x —_— X —
2410, rde TPV dE

10
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The weight derivative can be calculated by differentia{Bg) with respect to the design variable based on
the consideration that, if, is thex; coordinate of a movable node, then

9 (dy(©) _
2(50)-
and

ad

5 (@) =0 (590)
Therefore

9x1(§) dxz dx,

a_xh ZZJ [ %, %) 5~ ( E)] d§ (60)
If x;, is thex, coordinate of a movable node, then

9 (dx,(©)) _

250
and

d

3 (11©) =0 (61)
Therefore

dxz 9x,(§) (dx;
axy, ZZI [1(6)_ _)_ Oxp, (d_.f)] % (62)

where weight minimization is equivalent to area minimization.

The general problem that we discuss in the present pajier isinimization of structural weight which must
satisfy constraints on stresses and geometry. Since hetss sind weight constraints are non-linear
functions of the design variables, then the feasiblectime approach has been employed as the
computational optimization technique. This method detegman usable-feasible direction where the design
point can be moved in the design space.

Assuming the weight as the objective functibfx) that we want to minimize Subject ¢tonstraint function
xix) <k, i=1..,M

According to iterative unconstrained optimization approabb, design variable is updated during the
iteration process to find the optimum result as follows

Xpe1 = Xp + Spdy (63)

where the line step parametgrdetermines the amount of changexito find the minimum design point
along the search directial,.

The iteration process must satisfy the following condition

Alxpe) —A(xp) < € (64)

11
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wheree is the predefined tolerance.

The search direction can be define
d, = —H"WA(xp) (65)

whereH" is theh — th approximation of the inverse Hessian matrix, which can oengd)

=i~ G |~ | * “o
wherel denote the identity matrix ar( )7 denote the transpose of the matrix

Pt =xp,0 —xp (67)
and

Q" = VACxtp+1) — VA(xp) (68)

H° =1 (69)

6 Numerical Results and Discussion

The twodimensional anisotropic plate with an elliptic hole wasduae the numerical exxample in ordt
verify the formulation and the implementation of BEM g@eted in this paper, the phiysidata of the
material of the considered plate for orthotropic (@¢eand isotropic (see [2]) and for anisiotrapigiven as
follows:

B_ 13.36, B2 _ 58 vy, = 0.295
E, E,
X2 f

old -l
1

|
T O

X1
I S S B N
AT, 7 =

(unit=mm)

Fig. 1. Boundary element model and design variables of the plate with elliptical hole.

According to the symmetry, only one quarter of the consitltwo-dimensional plate and the dimensic
and notation are given in Fig. 1 where the plate was modetadimear elements. The ddesign bounike
controlledby five master nodes as the design variables. In order toottmt positions of tthe master nc
which control the shape of the structure, a -node cubic spline curve fitting technique have k
developed and successfully used [34]. The optimum : of the deterministic design is shown in Fi¢

12
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Initial Shape
Optimum Shape

Mo

Fig. 2. Optimum shape of infinite anisotropic plate with elliptical hole.

The variations of the displacement componw, andu, with x coordinate are plotted in Figs. 3 and ¢
show the effects of anisotropy which are very pronouncetiefigure:

12
1510 . |
i
t
]
;
i
s i F ;]
o ¥
= [
= Anisotropic —— ,’.-'
E Orthotropic - l":
=] Isotropi i F
= sotropic ;
.% 1n :
= 5100
L
X

Fig. 3. Variation of the displacement u; with x coordinate for

Anisotropic, Orthotropic and Isotropic.

210" T

l-...

11
il Anisotropic ——
Orthotropic -
Isotropic

-
-
~

Displacement u,

3 X

Fig. 4. Variation of the displacement u, with x coordinate for

Anisotropic, Orthotropic and Isotropic.

13
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The variations ofhe stress componera, 1, 01, anda,, are plotted in Figs. 5, 6 and 7 to show the effet

anisotropy which are very pronounced on the fig

410"

B Anisotropic —
307 - Orthotropic e '
Isotropic !"

Stress 041

1 2 3 4 5 X
Fig. 5. Variation of the stress o, with x coordinate for Anisotropic,

Orthotropic and Isotropic.

4000 |
i
000 - A
i
!
1
)
= Anisotropic — |J
o Orthotropic - h
= 2000 - Isotropic e " _
>
-
B
1]
1000 - .
]
X

DU !

Fig. 6. Variation of the stress g, with x coordinate for Anisotropic,

Orthotropic and Isotropic.

The displacement sensitivities are plotted in Figs. 8 atmverify the formulation and thimplementatior
of BEM. These results obtained with the BEM have been cadpgraphically with thosse obtained u
the analytical solution of [35] and finite element method3&]. It can be seen from thesse figuhes the
BEM results are in very goaaigreement with the analytical results and FEM, thusicoirig the accurac

of the BEM. Our results thus confirm that our method srgtrand efficien

14
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1000 [ |
80 - s
i
Anisotropic — H ;
Orthotropic e :
g 00 - Isotropic _—— f:.' |
© ;
7
77}
@
=
»n dr 4
M 4
|
0
vl 5 x

Fig. 7. Variation of the stress g,, with x coordinate for Anisotropic,
Orthotropic and Isotropic.

0.18
0.16 G L L ey
3‘ oM -’:’JI
'; . -':* e Analytical
- 02 §gooo | FEM
'w o 1 weaees BEM
C oom o
L ¥
v 0
- 0 j
Y #
0 X
D 05 1 15 2 15 3 15 4

Fig. 8. Variation of the displacement u, sensitivity with x coordinate.

0 X
10&|I5:25115l

> mq G
= 1
=2l I R PP Analytical
= weerr BEM
-
o 1

008 1
Q .
v g,
5 '!.'J,..........-...........-..
3 on &

014

Fig. 9. Variation of the displacement u, sensitivity with x coordinate.

7 Conclusion

In the present paper, we demonstrated that the boundaryrelemathod can be successfifully used ipe
design sensitivity and optimization of anisotropic struesyproblems. In the proposed meethod, tieetedf

15
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anisotropy on the displacements and stresses isrt#mated and the displacement sensitivities vésipect

to design variables are calculated using implidfedentiation method (IDM). The numerical optimiizn
method used in the program is the feasible diractipproach, together with the golden-section search
technique. The shape of anisotropic structurestmamanipulated easily by varying a chosen set ef th
design parameters during the optimization proc€le. shape sensitivities can be directly derivedhftbe
variational form of the governing equations. Theuxacy produced by the proposed method enablassthe

of gradient-based minimizers, that converges sunzently.
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