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Abstract

The first theorem related to the denseness of the image of a vertical line Re s = σ0, σ0 > 1 by the
Riemann Zeta function has been proved by Harald Bohr in 1911. We argue that this theorem is
not really a denseness theorem. Later Bohr and Courant proved similar theorems for the case
1/2 < Re s ≤ 1. Their results have been generalized to classes of Dirichlet functions and are at
the origin of a burgeoning field in analytic number theory, namely the universality theory. The
tools used in this theory are mainly of an arithmetic nature and do not allow a visualization of
the phenomena involved. Our method is based on conformal mapping theory and is supported
by computer generated illustrations. We generalize and refine Bohr and Courant results.
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1 Introduction

Bohr theorem, see [1], says that for any given complex number z ∈ C\{0} there is σ0 > 1 such that
for any ε > 0, a t0 ∈ R can be found for which |ζ(σ0 + it0) − z| < ε. In other words the image
ζ(σ0 + it) of the line Re s = σ0 gets any closer to z for conveniently chosen t ∈ R. We notice that
σ0 depends on z and once fixed, there is no reason to expect that the same line will get closer to
some other arbitrary complex number. Therefore, it cannot be inferred that there is any σ0 > 1
for which the set {ζ (σ0 + it) | t ∈ R} is dense in some domain of the complex plane. However, the
computer experimentation (see Fig. 1 and Fig. 2) suggests that a bounded domain can exist in
which the image of Re s = σ0 is a dense set. Yet Bohr theory does not deal with such a problem.

Another theorem proved by Bohr in [1] says that for every z ∈ C\{0} and every δ > 0 we have
ζ(s) = z for some s with 1 < Re s < 1 + δ, i.e. not only the image of this strip is dense in C,
but it effectively covers the whole dotted plane C\{0}. Later Bohr and Courant, see [2], proved
similar theorems for the case 1/2 < Re s ≤ 1. Their results have been generalized to classes of
Dirichlet functions and are at the origin of a burgeoning field in analytic number theory, namely
the universality theory.

Bohr and Courant theorems do not say that for the given z and the corresponding σ0 there is t0
such that ζ(σ0 + it0) is effectively equal to z. Yet, taking εn → 0, they insure that a sequence (tn)
exists such that |ζ(σ0 + itn)− z| < εn, therefore lim

n→∞
ζ(σ0 + itn) = z. It may happen that there is

a convergent subsequence (tnk) of (tn) and if lim
k→∞

tnk = t0 then, by the continuity of the function

ζ(s), we have that ζ(σ0 + it0) = z. If such a subsequence does not exist, then a sequence (tn)
must have the limit +∞ or −∞ and lim

n→∞
ζ (σ0 + itn) = z. One can say that the value z is always

reached by ζ(σ + it) on some line Re s = σ0, σ0 > 1, either in a finite interval for t, or at the limit
as t → ∞. The question remains: does the image of a line Re s = σ0 reach any complex value? In
the affirmative case we will say that the line has the denseness property in the whole complex plane.

The tool used by Bohr and Courant to prove their denseness theorems has been Kronnecker’s
Diophantine approximation which states that given a set of linearly independent (in the field of
rationals) real numbers µ1, µ2, ..., µn and a set of arbitrary real numbers η1, η2, ..., ηn, for every
ε > 0 there is t0 ∈ R and a set of integers g1, g2, ..., gn such that |t0µk − ηk − gk| < ε for every
k = 1, 2, ..., n. This means that t0µk = ηk + gk + αk, where |αk| < ε and since e2gkπi = 1, we have
e2πt0µki = e2πηki · e2παki, where |e2παki| is close to 1. Bohr started in [1] with the construction
of an infinite product depending on σ0, on the sequence (pn) of prime numbers and on some real
numbers ηn ingeniously chosen such that the limit of the product is the given complex number z

F (η1, η2, ..., ηn, ...) =
∞∏

n=1

(1 + p−σ0
n e2πiηn)−1 = z. (1.1)

Then, for an arbitrary ε > 0 a natural number N can be found such that

∞∏
n=N+1

(1 + p−σ0
n e2πiηn)−1 <

ε

4 + ε
= ε1. (1.2)

In order to compare the product
N∏

n=1

(1 + p−σ0
n e2πiηn)−1 with ζ(σ0 + it), he used Diophantine

approximation for the the first N terms of the Euler product expressing this function:

ζ(σ0 + it) =

∞∏
n=1

(1 + p−σ0
n eiµn)−1,

where µn = π − t log pn.
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On the page 418 he writes:
Ferner ist für jedes reelle t

∞∏
n=N+1

(1 + p−σ0
n eiµn) = 1 + α2, (1.3)

wo α2 = α2(t) die Ungleichung |α2| < ε1 erfüllt.

We notice that this affirmation can be true only if
∞∏

n=1

(1 + p−σ0
n eiµn) converges uniformly with

respect to t ∈ R, which is the case. Indeed, the inequality∣∣∣∣∣
∞∑

n=1

1

nσ0+it

∣∣∣∣∣ ≤
∞∑

n=1

1

nσ0
= ζ(σ0)

implies the uniform convergence of the series
∞∑

n=1

1

nσ0+it
for t ∈ R, which in turn implies the uniform

convergence of the Euler product
∞∏

n=1

(1 + p−σ0
n eiµn)−1 representing the same function. This last

inequality shows that the image of the line Re s = σ0 by the function ζ(s) is a bounded set, and
therefore it cannot be dense in the whole complex plane.

Thus, the interpretation of the sentence:

zu jedem z ̸= 0 gibt es eine reelle Zahl σ0 > 1 derart, dass auf der Geraden σ = σ0 die Function
ζ(s)− z beliebig kleine Werte annimmt

should not be in terms of denseness. To insure this and taking into account the previous remark,
we can state the following:

Theorem 1.1. For no value σ0 > 1, has the line Re s = σ0 the denseness property in the whole
complex plane.

Moreover, even for the case 1
2
< σ0 ≤ 1, which will be dealt with in section 2, the existence of t0

with the given property must be treated with care. The value t0 depends on ηk, which depend on
σ0 and the number N depends on ε. But t0 depends also on µk, which in turn depend on t. This
chain of dependence is extremely intricate.

We will show that, for example, if z is real negative the existence of t0 is rather improbable. Indeed,
the existence of t0 implies that the image of the line Re s = σ0 passes through that z, i.e. the
line Re s = σ0 intersects the pre-image of the negative real half axis at a point corresponding to a
negative value as big as we want in absolute terms. Yet, if instead of Re s = σ0 we take a half-line
making an arbitrary small angle with the vertical, since lim

σ→+∞
ζ(σ+ it) = 1 uniformly with respect

to t, the image of an infinite part of that half line will remain in a neighborhood of z = 1 for t
big enough. Hence only a finite number of points on this half-line can be on the pre-image of the
negative half axis. To justify this affirmation we need to make use of the geometric characterization
of the mapping of the complex plane by the function ζ(s) (see [3], [4], [5] and Figs 1 and 2). It is
known that the mapping is locally injective, except for the points where ζ′(s) = 0, which forms a
discrete set. This set and the pre-image of the real axis provide a partition of the complex plane
into sets whose interior are mapped conformally by ζ(s) onto the whole complex plane with some
slits. Such domains have been found for any Dirichlet series having a half plane of convergence
and which can be continued analytically to the whole complex plane except for a simple pole at
s = 1. These are the fundamental domains of the function. Every fundamental domain contains a
unique component of the pre-image of the negative real half axis. Such a component may or may
not intersect the line Re s = σ0, where σ0 > 1

2
.
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The computer experimentations with the Riemann Zeta function we conducted so far shows very
rare events of such intersections. In fact, in our trials, no such intersection occurred for σ0 > 1.
Moreover, as seen in Figs. 1 and 2 below, where we took σ0 = 1.01, there is an insignificant
difference between the images by ζ(s) of the intervals [106, 106 + 100] and [109, 109 + 100] on the
ordinate in regard with the interval spanned by the respective images on the real axis. Moreover,
these last intervals are both on the positive real half axis. There is no obvious reason why the
configuration should change drastically for even bigger values of t such that the image by ζ(s) of
the line Re s = 1.01 should hit the negative real half axis.

Similar images of very distant intervals on Re s = 1.01

Fig. 1. Plot of Riemann Zeta
Function for σ0 = 1.01 and
t = Im (s) ∈

[
106, 106 + 100

] Fig. 2. Plot of Riemann Zeta
Function for σ0 = 1.01 and
t = Im (s) ∈

[
109, 109 + 100

]

2 The Case of the Critical Strip

As the image by ζ(s) of a line Re s = σ0 + it with σ0 in the critical strip is no longer bounded, it
can be expected that the respective line has the denseness property. But the method used by Bohr
in his first paper on this topic was no more applicable in such a case since the Riemann series is
divergent for σ ≤ 1. He and Courant succeeded to circumvent this difficulty by using a mean value

theorem which says that if the Dirichlet series f(s) =
∞∑

n=1

an

ns
converges for Re s > 0, then

lim
T→∞

1

2T

∫ T

−T

|f(σ + it)|2 dt =
∞∑

n=1

|an|2

n2σ
.

They found that, when

f(s) =

{
ζ(s)

N∏
n=1

(1− p−s
n )− 1

}
(1− 21−s),
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the coefficients an are such that an = 0 for n < pN+1 and |an| ≤ 2 for n ≥ pN+1, which allowed
them an easy evaluation of that mean value and finally to deal with the case where 1

2
< σ0 ≤ 1.

Bohr and Courant denseness theorems have an interesting implication regarding the fundamental
domains of the function ζ(s). The computer experimentation in [3], [4], [5] has shown that all the
Sk-strips of this function have a width on the line Re s = 1 of approximately 10 and that the number
of fundamental domains contained in those strips is increasing apparently logarithmically with k.
There is no proof for these findings, but if they are true, then the width of some fundamental
domains on the line Re s = 1 must tend to zero as k → ∞.

We can show now that this is true regardless of the previously mentioned experimental observations.
We use as tool the invariance of conformal module of quadrilaterals with respect to a conformal
mapping (see [6], page 19). Since {ζ(1 + it)| t ∈ R} is an unbounded set and for any δ > 0, the set
{ζ (1 + δ + it) | t ∈ R} is bounded, a sequence of quadrilaterals whose conformal module form an
unbounded set can be defined. Indeed, there is a sequence (tn) such that
lim

n→∞
ζ(1 + itn) = ∞. Let us denote by Ωn the fundamental domains whose closure contains

1+ itn. Obviously, we can change tn such that for δ > 0 small enough, both 1+ itn and 1+ δ+ itn
belong to Ωn. Let ∆n be the quadrilateral having two vertices at 1 + itn and 1+ δ+ itn, the other
two at the intersection of the lines Re s = 1 and Re s = 1 + δ with one of the components of the
boundary of Ωn and the sides on the respective component, on the lines Re s = 1, Re s = 1+ δ and
on the line Im s = tn. Since the image by ζ(s) of the line Re s = 1 + δ is bounded one of the sides
of the quadrilaterals ζ(∆n) remains bounded as n → ∞ and since lim

n→∞
ζ(1 + itn) = ∞, the other

three sides have the lengths tending to ∞ as n → ∞. It results that the conformal module of ζ(∆n)
tends to ∞ as n → ∞. The same must happen with the conformal module of ∆n. Since one of the
sides has the fixed length δ, the length of the adjacent sides must tend to zero and this proves our
affirmation.

We need now to take a closer look at the denseness property in the critical strip.

When σ0 = 0.51 only small in absolute terms negative values for the intersection of the image by
ζ(s) of the line Re s = 0.51 with the real axis were involved when letting t vary through values in
the range of 1012 (see Fig. 4).

Moreover, in the Sk-strip shown in Fig. 3, which contains 22 non trivial zeros of ζ(s), the line
Re s = 0.51 does not intersect any component of the pre-image of the negative real half axis,
therefore its image by ζ(s) does not intersect the negative real half axis. Only two instances appear
in this strip where a line Re s = σ0, σ0 > 0.5 can hit a component of the pre-image of the negative
real half axis.

The arithmetic approach, by using Kronnecker theorem, does not allow any geometric interpre-
tation. However, the phenomenon is of a geometric nature, since it involves the conformal mapping,
hence we should be able to express geometrically the denseness property. One way to do it is to
look at the image by ζ(s) of segments of the line Re s = σ0 included in every strip Sk (see [3], [4],
[5]).

It is a curve starting on the interval (1,+∞) of the real axis, ending on the same interval, having
several other points of intersection with the real axis and several self-intersection points. Illustrations
of such curves appear in Figs. 1,2, and 4,5. The image of every segment of that line included in a
fundamental domain is a Jordan arc, since the mapping is injective in the respective domain. These
are parts of that curve having no self-intersection points, although different such Jordan arcs can
intersect each other. Also, as seen in Fig. 4, some of these arcs intersect the negative real half axis
and then, since every component of the pre-image of the negative real half axis belongs to a unique
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fundamental domain, they must intersect it twice or be tangent to it. Since ζ(s) is an analytic
function, the image by ζ(s) of any line Re s = σ0 is smooth, except at the images by ζ(s) of the
zeros of ζ′(s). In such an image the curve must have a turning point with a unique half-tangent,
as seen in Fig. 6 and 7. If the line Re s = σ0 passes close to a zero of ζ′(s), then its image has a
false turning point, as those which can be noticed in Fig. 1 and Fig. 2 or the curve can make a
small loop there. In fact the curve continues to be smooth in the neighborhood of such a zero. For
σ0 > 1

2
, if the line Re s = σ0 intersects twice Γk,j , then both points of intersection are on the same

component of the pre-image, either of the negative real half axis or of the positive real half axis.
For no apparent reason, the last one is much more frequent. In fact, the computer experimentation
did not show at all instances of the first one for values of the ordinate t up to 106. However, for
bigger values of t, as for example 1012 in Fig. 3, their denseness in a small interval at the left of
z = 0 is conceivable. Yet, for a larger interval the values of t have to be exceptionally big.

0.5 0.6 0.7 0.8 0.9σ

1
.×
1
0
1
2
<
t
<
1
.×
1
0
1
2

Fig. 3. A srtip Sk with 22 zeros
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Fig. 4. Plot of Riemann Zeta Function for σ0 = 0.51 and
t = Im (s) ∈

[
1012 + 5, 1012 + 10

]

Fig. 5. Plot of Riemann Zeta Function for σ0 = 0.51 and
t = Im (s) ∈

[
1012 + 11.2, 1012 + 16.8

]

3 General Dirichlet Series

We have dealt in [4] and [8] with different geometric aspects of general Dirichlet series and have
shown that most of the properties of the Riemann Zeta function extend to vast classes of such series.
Moreover, the Dirichlet L-functions have been implemented in Mathematica and the possibility
exists of producing computer visualizations of most phenomena similar to those known for the

7
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Image of a vertical line passing through double zero s} = 0.5 + 31.586925 · i.

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

2

30 < t < 33

Fig. 6. Parametric plot of f on{
1
2
+ i · t| t ∈ [30, 33]

}
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

2

25 < t < 40

Fig. 7. Parametric plot of f on{
1
2
+ i · t| t ∈ [25, 40]

}

function ζ(s). In particular, we can illustrate the denseness property of vertical lines for these
functions. Due to the fact that to all the functions obtained by analytic continuation of general
Dirichlet series fundamental domains which are horizontal strips are associated, the image of a
vertical line will be always similar to those in Figs. 1, 2 and 4, 5. Indeed, it is the union of infinitely
many Jordan arcs, which correspond to the part of that line contained in a fundamental domain.
The denseness property means simply that these Jordan arcs fill the whole complex plane.

A general Dirichlet series is an expression of the form

ζA,Λ(s) =

∞∑
n=1

ane
−λns, (3.1)

where A = (an) is an arbitrary sequence of complex numbers with a1 = 1 and Λ = (1 = λ1 < λ2 <
...) is an increasing sequence of positive numbers such that lim

n→∞
λn = ∞. Suppose that the abscissa

of absolute convergence of ζA,Λ(s)

σa = lim sup
n→∞

1

λn
log

n∑
k=1

|ak| (3.2)

is finite and that ζA,Λ(s) can be continued analytically to the whole complex plane, except for a
simple pole at s = 1. We keep the notation ζA,Λ(s) for the function obtained in this way.

Every fundamental domain Ωk,j of ζA,Λ(s) contains two disjoint sub-domains Ω+
k,j and Ω−

k,j which
are represented conformally by the function respectively onto the upper half plane and onto the
lower half plane with some slits. If j ̸= 0 then one of them has as boundary the curve Γk,j , namely
that is Ω+

k,j if j < 0 and Γk,j is not an embraced curve or if j > 0 and Γk,j is embraced and that

domain is Ω−
k,j in the alternative situation. If the line Re s = σ0 intersects the pre-image of the

8
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negative real half axis, then it will separate the domain bounded by Γk,j into two sub-domains:
∆′

k,j and ∆′′
k,j , the first one bounded and the second unbounded. The denseness property into the

whole complex plane of the image of the line Re s = σ0 requires that the closure of ∪k,j ζA,Λ(∆
′
k,j)

covers the negative real half axis. This property is as surprising as the denseness itself, since every
domain ζA,Λ(∆

′
k,j) is bounded. Moreover, the sets ∪k,j ζA,Λ(∆

′
k,j) and ∩k,jζA,Λ(∆

′′
k,j) are disjoint

and their union covers infinitely many times the whole complex plane.

In what follows we will deal with the particular case where ζA,Λ(s) can be written as an Euler
product:

ζA,Λ(s) =
∏
p∈P

(1− ape
−λps)−1, (3.3)

where P is the set of prime numbers. With σ > σa, one can reproduce the Bohr construction (see
[1]) for ζA,Λ(s) instead of ζ(s). Namely, given an arbitrary complex number z ̸= 0, take a circle
(K) passing through z and 1 of radius big enough and choose recursively the angles φn such that
zn = zn−1

[
1 + |apn |e−λpnσ · eiφn

]
∈ (K), where z1 = 1, arg zn > arg zn−1 and pn is the n-th prime

number. Due to the absolute convergence of ζA,Λ(s) at s = σ+ it, the sequence (zn) converges and
obviously

lim
n→∞

zn =
∞∏

n=1

[
1 + |apn |e

−λpnσ · eiφn

]
∈ (K). (3.4)

As in [1], there are infinitely many ways of choosing σ = σ0 such that lim
n→∞

zn = z. It can be easily

verified that (3.1) and (3.3) imply:

∞∑
n=1

|an|e−λnσ0+iθn =
∏
p∈P

(1− |ap|e−λpσ0+iθn)−1, (3.5)

where θn = arg an. If the numbers λn are such that any finite subset of Λ is linearly independent with
respect to the rationals, then Diophantine approximation can be used for φpn and µn = π−tλpn+θpn
and all the arguments used in [1] are valid for ζA,Λ(s) instead of ζ(s). Hence the following can be
proved.

Theorem 3.1. For ever z ∈ C \ {0} and every ε > 0 there is σ0 > σa and t0 ∈ R such that∣∣∣∣ζA,Λ(σ0 + it0)

z
− 1

∣∣∣∣ < ε.

Denoting by |A| the set |a1|, |a2|, ... we have∣∣∣∣∣
∞∑

n=1

ane
−λn(σ0+it)

∣∣∣∣∣ ≤
∞∑

n=1

|an|e−λnσ0 = ζ|A|,Λ(σ0),

hence ζA,Λ(σ0 + it) is bounded on Re s = σ0. This shows that no line Re s = σ0 has the denseness
property with respect to ζA,Λ(s) for σ0 > σa, which generalizes Theorem 1.1.

If A is generated by a Dirichlet character and λn = log n, then ζA,Λ(s) is an ordinary Dirichlet
series and if an = χ(n), where χ is a Dirichlet character, we say that ζA,Λ(s) is a Dirichlet L-series.
For such a series we have σa = 1. It is known that Dirichlet characters are totally multiplicative
functions and the formula (3.3) takes place for any Dirichlet L-series. It is then expected that the
image of a line Re s = σ0 by such a function be similar to the image of that line by the Riemann
Zeta function. However, linear combinations of such functions are no longer Euler products and
Bohr theory does not apply to them. Yet, the partition of the plane into Sk-strips and that of those

9
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strips into fundamental domains follows the same rules, and σa = 1 for each one of them, therefore
the image of vertical lines by such a function should be similar to that produced by ζ(s). Moreover,
for σ0 > 1 and for a Dirichlet character χ modulo q we have

L(χ, σ0 + it) =

∞∑
n=1

χ(n)

nσ0+it
=

q∑
k=1

∞∑
n=1

χ(nq + k)

(nq + k)σ0+it
=

q∑
k=1

χ(k)

∞∑
n=1

1

(nq + k)σ0+it

and for σ0 > 1 all these last q series are convergent, while for σ0 ≤ 1 at least one of them is
divergent. The series of L(χ, σ0 + it) has the same behavior, therefore the image by L(χ, s) of the
line Re s = σ0, σ0 ≤ 1 is an unbounded set. In other words, from the point of view of the image of
the line Re s = σ0, the functions L(χ, s) and ζ(s) behave similarly. This is obviously true also for
linear combinations of Dirichlet L-series.

We have shown in [7] that the functions ζA,Λ(s) have at most one double zero in every strip Sk and
no zero of higher order. The existence of a double zero has been revealed in [8]. Our computation
reveals that for the function f : C → C given by

f (s) = 0.65697 · f0(s) + 0.34303 · L(7, 4, s),

the double zero (see Table 1) is located at approximately

s} = 0.5 + 31.586925 · i.

Here we consider

f0(s) =
1

2
{[L(7, 2, s) + L(7, 6, s)] + 0.6651818899 · i · [L(7, 2, s)− L(7, 6, s)]} , s ∈ C.

Table 1. Plot of (1− τ) f0 (s) + τL (7, 4, s) with specific values of τ

τ = 0.34306 τ = 0.34303 τ = 0.34300

It is therefore of some interest to know the configuration of the image of a vertical line passing
through that zero. Figs 6 and 7 from below represent the image of the segment of this line
corresponding to t ∈ [25, 40], respectively t ∈ [30, 33].

4 Conclusions

A geometric approach to the study of Dirichlet series has been known for more than 80 years, yet
it did not deal with denseness theorems. We have used in this paper modern computing tools in
order to reveal geometric aspects of denseness theorems and color visualization in order to make
our point of view more obvious. Our interest was limited to the results of the two pioneers in this
field: H. Bohr and R. Courant.

10
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