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The failure probability of the wave energy converters is exceptionally high,

which again increases the operation cost of the entities. The cause of this high

cost lies in the fact that various factors influence the production efficiency of the

converters. To solve this problem, multiple converters are utilized in series and

parallel formation to produce energy simultaneously. This multiple converter

system, known as wave energy farms, also fails to increase efficiency and

decrease the cost of operation sufficiently. The reason for this is that not

only technical but socio-economic as well as different environmental factors

have a significant role in this aspect, which remains undetected or under- or

over-detected while calculating the potential wave energy. The present

investigation tries to classify the different factors which are most influential

in controlling the transfer efficiency of wave energy farms to solve the problem

of erroneously detecting significant factors. The authors offer a new indicator

for estimating the failure likelihood of wave energy farms in converting ocean

wave energy into electricity by combining Multi-Criteria Decision Making and

Polynomial Neural Networks with information collected from an unbiased

ranking technique.
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1 Introduction

With the current population and economic growth, it is predicted that in the near

future, demand for energy will increase considerably by 17 TW (Rotty, 1979). Global

climate change, as well as the warnings linked with it, constitute a serious threat to the

world’s ecosystems. The possibility of reversing this trend relies on lowering CO2
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emissions into the environment. By investing in renewable

energies such as wind and solar electricity, international

treaties are playing a critical role. However, there is another

renewable energy cluster with great potential and a bright future.

This is the energy created by waves, which is quickly gaining

traction as a viable alternative to reducing the environmental

impact of fossil fuel use (Abanades et al., 2014). Wave energy has

a number of advantages, including, but not limited to, large

energy capacity One of the most concentrated, reliable, and long-

lasting energy sources, wave energy is available in many nations

but is underutilized (Mackay et al., 2010).

As a result, the utilization of wave renewable energy offers

enormous potential for lowering greenhouse gas emissions. More

wave energy providers are showcasing their products to draw investors

in a competitive manner as a result of the growing marine renewable

sector. Information about WEC is frequently confidential. Developers

want to place a device in the best possible way, but investors just want

to make money. The rivalry also causes WECs on the market to have

very dynamic properties. Therefore, research is necessary to improve

evaluations of novel WECs and offer recommendations for matching

WECs and locales (Choupin et al., 2021). Because the wave energy

converter (WEC) produces no gaseous, liquid, or solid emissions, wave

power is less environmentally damaging than most other forms of

energy generation (Brooke, 2003). Wave farms vary depending on the

device type, condition of the ocean, farm size, proximity to shore and

grid connection, and device and plant cost estimation of the farm

layout.

Wave farms (Guanche et al., 2014) are arrays of wave energy

converters that are arranged in either series or parallel connections to

cumulatively convert the available potential of wave energy

resources. The efficiency of conversion mainly depends on the

performance efficiency of the converters (Bódai and Srinil, 2015),

the transmission loss incurred in the connecting cables (Sharkey

et al., 2013), the park effect (Katsaprakakis and Christakis, 2014;

Gatzert and Kosub, 2016), and some other factors which depend on

location, such as wind speed, duration of fetch (Carrasco et al., 2012),

water quality (Ghosh et al., 2016), tourism potential (Greaves et al.,

2016), etc. Due to various crucial characteristics, such as gap

resonance, array arrangement, wave nonlinearity, 3-D flow field

effect, power take-off (PTO) mechanism, and oblique wave

incidence, the hydrodynamic behavior of multi oscillating wave

surge converter devices is still not fully known (Cheng et al., 2021).

It is particularly difficult to determine how nonlinear multi-

body hydrodynamic interaction would affect the harvested

energy of OWSC devices. It is necessary to do systematic

research into the additional nonlinear hydrodynamic

performance of an array of OWSCs.

1.1 Objective and novelty

The goal of this research is to determine the best arrangement

for wave energy farms so that the most quantity of utilizable

energy can be transformed. The study’s unique contribution is

the creation of an indicator that may objectively describe the

performance efficiency of wave farms in terms of location, design,

and cost. The creation of an instinctual indication was

accomplished, and it was used to solve a problem for the

first time.

2 Method applied

The present study includes the application of the Multi-

criteria decision making (MCDM) and ANN-based GMDH

methods. The latter method was used to incorporate

adaptability, and MCDM was used to find the priority of the

input parameter with respect to the study objective. Sections 2.1,

2.2 depict the strengths, weaknesses, and application of the

MCDM and GMDH methods in the related fields.

2.1 Multi-criteria decision making

The MCDM is used to make objective decisions and

determine the significance of selected characteristics for the

study’s specific goal. In this study, MCDMs such as Fuzzy-

AHP (Shaw et al., 2012) and ANP (Aragonés-Beltrán et al.,

2014) were used to determine the importance of selected

characteristics in relation to the investigation’s goal.

2.1.1 Fuzzy-AHP
The computation approach developed by Saaty (Saaty, 1980)

for the analytical hierarchy process was based on crisp judgment.

On the basis of fuzzy set theory and hierarchical structure

analysis, many fuzzy AHP approaches have been devised. In

the application process, Saaty proposed the significance scale,

which uses numbers from 1 to 9 while the decision-maker

performs paired comparisons. Most real-life decisions, on the

other hand, have unknown outcomes (Chang, 1996).

The weights for evaluative elements are determined using

fuzzy AHP, which is based on fuzzy interval arithmetic using

fuzzy triangular numbers and confidence indexes, and an interval

means method (Buckley, 1985; HMd andWu, 2011). To enhance

decision-making, some academics have combined fuzzy theory

with AHP.

2.1.2 Analytical network process
Analytical network process (ANP) is a flexible decision-

making strategy that works with both quantitative and

qualitative data and qualitative data. Saaty introduced ANP

as a novel MCDM technique to solve the real-world concerns

of interaction and feedback among criteria and options (Saaty,

2004). ANP is a nonlinear dynamic structure that is based on

the Markov Chain notion and is an extension of AHP (Saaty,

1999). We discovered that while dealing with ANP, the
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standard way of normalizing the non-weighted super matrix

was not appropriate since, in the actual world, varying degrees

of impact exist within clusters of factors/criteria. As a result,

the weighted super matrix’s weighted assumption of equal

weights for each cluster is impractical and has to be modified

(Luo et al., 2010). Three matrix analyses are included in the

ANP method: the super matrix, the weighted super matrix,

and the limit matrix (Yang et al., 2003). Table 1 depicts the

advantages, disadvantages, and application of the ANP

method.

2.2 Ranking method

Duncan was the first to suggest an economical design for X

control charts (Duncan, 1956). By adding statistical restrictions

into the economic model, Saniga was the first to propose the

economic-statistical design of X bar and R charts (Saniga, 1989).

Multiple objectives, including cost function and statistical

features, are maximized simultaneously in their method. As a

result, the best control chart design is modeled as a Multi-criteria

decision making (MCDM) issue (Allen, 2006) (Table 2).

TABLE 2 Table showing the features of the twelve development models.

Model No. No. of
input

No. of
output

MCDM adopted Ranking method Training algorithm

21AHG1 21 1 AHP Citation frequency GMDH

21ANG1 21 1 ANP Citation frequency GMDH

21AHANG1 21 1 AHP-ANP Citation frequency GMDH

21SAHG1 21 1 AHP X, R, P GMDH

21SANG1 21 1 ANP X, R, P GMDH

21SAHANG1 21 1 AHP-ANP X, R, P GMDH

21FAHG1 21 1 Fuzzy-AHP Citation frequency GMDH

21FANG1 21 1 Fuzzy- ANP Citation frequency GMDH

21FAHANG1 21 1 Fuzzy- AHP- ANP Citation frequency GMDH

21FSAHG1 21 1 Fuzzy-AHP X, R, P GMDH

21FSANGM1 21 1 Fuzzy-ANP X, R, P GMDH

21FSAHANG1 21 1 Fuzzy-AHP-ANP X, R, P GMDH

TABLE 1 Table showing advantages, disadvantages, and application of Fuzzy-AHP method.

MCDM
method

Advantages Disadvantages Application

Fuzzy-AHP • The reciprocal matrix may be used to model
the views of numerous decision-makers

• Even for a simple issue, there is not always a
solution to the linear equations, and the
computational requirements are enormous

• Using the fuzzy AHP approach to evaluate
manufacturing partners in the challenge of
integrated manufacturing planning

• It’s simple to adapt to the fuzzy situation, and
it ensures a unique reciprocal comparison
matrix solution (Chen et al., 2008)

• A fuzzy AHP-based inventory categorization
system in a firm that manufactures electrical
small household products. The study developed
a decision-making system that incorporates
fuzzy ideas and real-world inventory data.
(Chiu et al., 2006)

Analytical
network
process

• The advantage of the network structure is
both alternatives and criteria are rated based
on each other because the criteria are
weighted as per their importance with respect
to the alternative

• Even specialists find it challenging to establish a
suitable network structure, and different
topologies provide varied outcomes (Velasquez
and Hester, 2013)

• The ANP method was used for an engineering
purpose in a diesel engine manufacturing firm
(Tan et al., 2007)

• Determine the appropriate fuel combination
for power generation from a long-term
perspective (Köne and Büke, 2007)

• It has a nonlinear dynamic structure • In the case of independency and
interdependency, it should be applied to the
ultimate priorities of suppliers in an automotive
manufacturing firm. (Kasirian and Yusuff,
2010)
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The present investigation also uses some statistical control

charts to find the rank of the selected factors in an unbiased and

non-preferential way.

The control charts are used to detect system performance

outliers. The charts are used in this study to determine the

relevance of the index’s optimal performance and the

associated features of the input parameters without outliers.

The separation of the factors in terms of their contribution to

optimizing the index performance. The X-bar, R, and P control

charts were used separately to rank the variables as per their

contribution to the study objective.

2.3 Group method data handling
algorithms

Ivakhnenko (Ivakhnenko, 1971) created the Group method

data handling algorithms (GMDH) model, which is one of the

learning machine models based on the polynomial theory of

complex systems. The most important input parameters, the

number of layers, the number of neurons in the middle layers,

and the network’s ideal topology design are all automatically

defined by this network. As a result, the GMDH network is a

model of active neurons that self-organize. During the training

step, the GMDH network’s topology is set using a polynomial

model that yields the least amount of error between the predicted

value and the observed output.

The neuro-fuzzy GMDH network is a highly versatile

algorithm that may be integrated with other iterative and

evolutionary algorithms with ease (Nariman-Zadeh et al.,

2002). The GMDH neural network is a self-organizing,

unidirectional structure with many layers made up of neurons

with comparable structures.

After selecting the model criterion in line with the modeling

and information division’s aims, GMDH will automatically

confirm the model. If several types of input units are used,

this modeling approach will generate multiple types of

models. This automated modeling method has been used to

create Bayesian networks (Xiao et al., 2009) and Mamdani-type

fuzzy models (Lemke and Müller, 2003).

The noise-immunity of GMDH is another attractive feature.

We all know that when data contains noise, the greatest danger is

over-fitting (Tan et al., 2006), which means that models become

too complicated and generalizable. This issue, however, may be

overcome in the case of GMDH.

3 Methodology

3.1 Brief description

Following an examination of the literature, the twenty-one

most critical factors for the efficiency of a wave energy converter

farm design were chosen. These factors are wave height, shipping

density, wave period, water depth, distance from the coast, wind

speed, salinity, regularity of wave, number of WEC, the distance

between WEC, wave incidence direction, array layout, length of

cable connecting to shore, buoy diameter, rated power, converter

FIGURE 1
Locations of the study area (Noori and Kalin, 2016)
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efficiency, unit cost, operating and maintenance costs, capital

costs, taxes and rate of energy charge per unit.

The current research took two steps to create an indicator for

representing farm performance in terms of the installation site,

converter design, and system cost.

The control charts X bar, R, and P were used in the first phase

based on their significance to the study goals. The Fuzzy-AHP

and ANP MCDM techniques were then used to determine the

priority value of each of the parameters. TheMCDM technique is

divided into three parts, which will be detailed in the next section.

3.2 Application of multi-criteria decision
making

The application of MCDM involves three steps, which are

described in the next section.

3.2.1 Criteria selection
The criteria were selected based on the study objective. In the

present study, the location (L), Design (D), and Cost (C) were

selected as the criteria on which the parameters will be compared.

3.2.2 Alternative selection
All the selected parameters were considered as alternatives to

the decision-making method. Based on the rank obtained using

the control chart method, each of the possibilities is compared to

one another.

3.3 Application of aggregation method

After comparing each of the alternatives against each other

based on the criteria and with respect to the study aim, the

criteria and alternatives were utilized to identify the equal weight

of the given parameters.

The criteria were then compared to one another based on the

available possibilities, all while keeping the study’s purpose in

mind. To evaluate the weight of importance for each of the

elements, both findings were cross multiplied based on the

criteria and in relation to the study’s purpose.

The weight vector or priority values of the parameters were

used to convey the relevance of the parameters at the end of this

strategy, which is directly proportional to the significance of the

variables.

Weight Function as the Indicator: The W-value, or Indicator

for Performance Evaluation of Wave Energy Converter Array

Design, was calculated by Eq. 1

Wvalue � ∑wnbn∑wmbm
(1)

where “wn” and bn denote the degree of the weight of importance,

beneficiary and non-beneficiary variables, respectively, and n and

m indicate the number of the beneficiary and non-beneficiary

variables.

3.4 Development of the group method
data handling model

With twenty-one inputs and one output, the GMDH model

was created. The models’ datasets were standardized, and

60 percent of the data was utilized for training, while the

remaining 40 percent was preserved for testing. A total of

twelve models were created using a variety of control charts,

MCDMs, and data transformations. Table 1 demonstrates how

the models were created in different methods to anticipate the

same goals.

Mean Absolute Error (MAE) (Willmott and Matsuura,

2005), Root Mean Square Error (RMSE) (Despotovic et al.,

2016), Mean Relative Error (MRE) (Gray et al., 2016), and

Correlation(R) (Pascual-González et al., 2016) were used to

evaluate the performance of all forty-eight models.

Model accuracy is known to be inversely proportional to the

former measures, but model performance is known to be directly

proportional to the latter measurements. The model’s

performance during the checking (c) or testing phase is a

better predictor of model dependability than the model’s

performance during the training (t) phase (Noori and Kalin,

2016).

According to the EI, three models were chosen for additional

validation after they were shown to be superior to the forty-eight

models produced for this investigation.

Root Mean Square Error (RMSE), Mean Relative Error

(MRE), and Percent bias (PBIAS) (Gupta et al., 1999) between

predicted and observed data were used to assess the dependability

of the selected three models. The Performance Index (PI) was

created to represent the models’ performance. Equ.2.

[PI � { Rt

MAEt +MREt + RMSEt + PBIASt
p0.6}

+ { RT

MAET +MRET + RMSET + PBIAST
p0.4}] (2)

where t is for testing and T is for the training phase.

Table 1 shows the nomenclature, which starts with the

number of inputs, then the first letter of the training process,

the data transformation function, and finally, the model number.

3.5 Sensitivity analysis

The most efficient model’s sensitivity will always be

proportional to the importance of the parameters in the

model output. For a model to be trustworthy and efficient in

predicting its output with dependability, the sensitivity and

significance must be consistent and associated. The model was
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subjected to a sensitivity analysis, and it was discovered to have

the highest EI of all the models produced for this study.

3.6 Case study

In Figure 1 represents the geographical locations of five

points (location 1 to location 5), which are used to define the

wave energy converter efficiency analysis.

Several industries are currently developing and

implementing novel technologies in wave energy generation

across the world. AquaEnergy Group, Ltd. (AquaEnergy), an

ocean wave corporation, describes its categorization growth and

optimization efforts in this study. Ocean energies have witnessed

a resurgence in attention in recent years, owing to a growing

recognition that we will need all types of clean energy to lessen

our reliance on fossil fuels.

4 Results and discussion

The weight vector of the parameters was calculated to

analyze the X bar, R, P control chart, and citation frequency;

the citation frequency refers to the number of citations

divided by the number of the literature surveyed, as

defined in Table 3. The twelve models were specified as

AHP, ANP, AHP-ANP, Statistical method with AHP,

Statistical method with ANP, Statistical method with

AHP-ANP, Fuzzy AHP, Fuzzy ANP, Fuzzy –AHP, Fuzzy-

ANP, Fuzzy-AHP-ANP, Statistical method with Fuzzy-AHP,

Statistical method with Fuzzy-ANP and Statistical method

with Fuzzy-AHP-ANP in Table 4. The performance of the

twelve models in the prediction of wave energy farm

performance is depicted in Table 5. Figures 2, 3 depict the

comparison of predicted and observed output during the

training and testing or predictive phase and the

TABLE 3 Table showing the rank of the parameter of X bar, R, and P control chart.

Parameters Rank The parameters are
ranked according to
the frequency of
citations (number of
citations/number of publications
surveyed)

X bar R Chart P Chart

Location aspect

Wave height 11 13 10 17

Shipping density 14 5 11 5

Wave period 13 17 13 9

Water depth 8 2 17 18

Distance from coast 18 20 15 11

Wind speed 7 14 18 8

Salinity 5 8 5 16

Regular wave (%) 15 6 7 21

Design

Number of WEC 17 15 8 2

Distance between WEC 4 1 6 7

Wave incidence direction 20 4 21 13

Array layout 3 18 3 15

Length of cable connecting two converters 1 16 1 4

Buoy diameter 2 7 2 6

Rated power 10 10 12 19

Converter efficiency 19 9 19 1

Cost

Unit cost 21 3 9 20

Operating and Maintenance costs 9 11 4 14

Capital costs 16 12 16 12

Taxes 12 19 20 3

Rate of charge per unit 6 21 14 10
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distribution of residuals derived from the predicted and

observed output, respectively.

According to the results of the fuzzy-AHP and ANP

strategies, the potency of the wave energy farm was found to

be the highest three most vital factors among the twenty-one

thought-about parameters.

The study’s performance analysis found that Model No.

21ANG1 was the most dependable of all the models

studied, followed by Model No. 21FAHG1. Both of the

essential models were GMDH-trained, utilized non-linear

neuron function, and modified the output. Models three

and seven, which were discovered to be the study’s

second and third most important models, incorporated

variable ranking as well as output transformation, and the

model was trained with GMDH. All the models that

employed all twenty-one input variables were included in

the analysis.

The model 21ANG1 was found to be better than the other

models in Table 5. According to the results, one model was

selected for prediction as performance will depend on the

method of variable ranking and may change if the method is

changed in Table 5. If the MCDM approach is altered, the

performance accuracy of the chosen model may change as

well. Thus it was assumed that if the method of MCDM

TABLE 4 Table showing the parameters as determined by various MCDM methods.

Parameter Method

AHP ANP AHP-
ANP

STAT-
AHP

STAT-
ANP

STAT-
AHP-
ANP

Fuzzy-
AHP

Fuzzy-
ANP

Fuzzy-
AHP-
ANP

Fuzzy-
STAT-
AHP

Fuzzy-
STAT-
ANP

Fuzzy-
STAT-
AHP-
ANP-

Wave height 0.024885 0.021292 0.091205 0.048335 0.091490 0.045554 0.040029 0.048903 0.039714 0.008883 0.049112 0.039407

Shipping
density

0.032338 0.042080 0.111114 0.049945 0.101482 0.051438 0.038773 0.049194 0.037587 0.009719 0.048870 0.054746

Wave period 0.032815 0.033518 0.066049 0.044774 0.077201 0.045542 0.041705 0.045725 0.04105 0.008053 0.046067 0.05198

Water depth 0.024461 0.010851 0.197297 0.052647 0.031022 0.051857 0.031636 0.050961 0.031478 0.006651 0.050412 0.035905

Distance from
coast

0.075579 0.104201 0.048901 0.037481 0.041714 0.040412 0.06604 0.037825 0.064299 0.005811 0.03794 0.053525

Wind speed 0.016812 0.008698 0.113818 0.046184 0.034116 0.050197 0.04782 0.045851 0.047996 0.00639 0.045827 0.050524

Salinity 0.009393 0.005664 0.268996 0.054396 0.080674 0.050662 0.02897 0.055024 0.028305 0.008946 0.055261 0.037306

Regular wave 0.066567 0.052836 0.10262 0.050979 0.017126 0.042855 0.041572 0.050706 0.039699 0.005475 0.050525 0.023096

Number of
WECs

0.064576 0.083191 0.031245 0.045783 0.027685 0.047032 0.046944 0.046116 0.044724 0.005915 0.046165 0.054034

Distance
between WEC

0.022312 0.004628 0.048297 0.058122 0.045352 0.057871 0.031471 0.057849 0.030471 0.007882 0.057753 0.050242

Wave incidence
direction

0.129103 0.162064 0.025158 0.042508 0.022345 0.046208 0.044695 0.038916 0.045257 0.005468 0.037568 0.045925

Array layout 0.02362 0.003837 0.061875 0.04958 0.018173 0.045724 0.059004 0.052009 0.053925 0.0056 0.052931 0.044306

Length of the
cable
connecting to
shore

0.002947 0.002837 0.178793 0.050295 0.115126 0.050165 0.04917 0.052614 0.043773 0.010295 0.053497 0.057605

Buoy diameter 0.003961 0.00325 0.091831 0.055727 0.024764 0.055423 0.030491 0.056477 0.02857 0.006698 0.056766 0.054754

Rated power 0.018024 0.016988 0.037059 0.048495 0.016083 0.045244 0.044245 0.04895 0.0419 0.005427 0.049127 0.037015

Converter
efficiency

0.119335 0.130206 0.028027 0.040284 0.030321 0.046615 0.046661 0.038068 0.046315 0.005744 0.037237 0.058387

Unit cost 0.170989 0.200263 0.270791 0.047488 0.024653 0.042718 0.071167 0.045453 0.07216 0.00564 0.044557 0.034992

O&M cost 0.061227 0.013567 0.260522 0.051528 0.086709 0.048189 0.051002 0.052952 0.048222 0.008955 0.053476 0.04421

Capital cost 0.060504 0.066323 0.125976 0.043173 0.103173 0.046177 0.070251 0.042209 0.067999 0.009195 0.041848 0.054107

Taxes 0.029302 0.026707 0.11842 0.038645 0.007114 0.04495 0.077474 0.038629 0.072529 0.004517 0.038712 0.061021

Rate of energy
charge per unit

0.01125 0.006998 0.224291 0.04363 0.003676 0.045169 0.082786 0.045567 0.074024 0.004616 0.046348 0.056911
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TABLE 5 Table results of the 12 models developed for prediction of efficiency of wave energy farms.

Model
name

No.
of
input

No.
of
input

Control
chart

MCDM
method

Training Testing Performance
index

Rank

PBIAS MRE MAE RMSE Correlation PBIAS MSE MAE RMSE Correlation

21AHG1 21 1 Citation
frequency

AHP and
GMDH

5.88E-13 3.01E-15 0.009734 0.0129395 0.99729 −0.41852 −0.00202 0.01019 0.013691 0.996396 16.08680507 04

21ANG1 21 1 Citation
frequency

ANP and
GMDH

0.0485223 0.0375392 −2.59147E-
15

0.09456E-
13

0.980194 0.0527452 0.0405997 −0.001701981 0.089902993 0.968775 18.95901594 01

21AHANG1 21 1 Citation
frequency

AHP-ANP-
GMDH

0.058395 0.046122 2.37532E-
15

0.76172E-
13

0.993053 0.058549 0.047452 -0.003636977 0.270815175 0.992229 16.85281 02

21SAHG1 21 1 X, R, P STAT-AHP -
GMDH

0.082308 0.065057 −4.54997E-
15

0.082308 0.98111 0.108371 0.07747 0.005494411 0.108371 0.965873 10.42604 10

21SANG1 21 1 X, R, P STAT-ANP -
GMDH

0.213197 0.156989 0.114248 0.24157 0.94751 0.24157 0.176355 0.086742 0.213197 0.942146 4.621591 12

21SAHANG1 21 1 X, R, P STAT-AHP-
ANP- GMDH

0.077556 0.061728 1.05985E-
14

0.077556 0.980692 0.083027 0.06789 0.009581961 0.083027 0.976466 12.58417 09

21FAHG1 21 1 Citation
frequency

Fuzzy-AHP-
GMDH

0.050294 0.04013 9.8116E-17 0.050294 0.990764 0.071842 0.050668 0.00286622 0.071842 0.983248 16.26858 03

21FANG1 21 1 Citation
frequency

Fuzzy- ANP-
GMDH

0.063017 0.050143 −1.88655E-
15

0.063017 0.986361 0.074005 0.056932 0.000500592 0.074005 0.978017 14.31441 05

21FAHANG1 21 1 Citation
frequency

Fuzzy- AHP-
ANP -GMDH

0.183057 0.138718 −5.02931E-
16

0.183057 0.885673 0.224924 0.162731 0.031966321 0.224924 0.856691 5.853031 11

21FSAHG1 21 1 X, R, P Fuzzy-STAT-
AHP-GMDH

0.071289 0.056897 −1.57263E-
15

0.071289 0.983314 0.07706 0.060123 −0.001496169 0.07706 0.979203 13.12914 07

21FSANGM1 21 1 X, R, P Fuzzy-STAT-
ANP-GMDH

0.067748 0.055097 −3.04701E-
15

0.067748 0.986213 0.084338 0.061257 −0.003342629 0.084338 0.98268 12.73374 08

21FSAHANG1 21 1 X, R, P Fuzzy-STAT-
AHP-ANP-
GMDH

0.071242 0.057606 1.21611E-
15

0.071242 0.988134 0.078869 0.0609 0.006539586 0.078869 0.987113 13.34419 06

The bold value is mention the best model of the prediction of efficiency of wave energy farms.
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remains unchanged, the accuracy of the model will be uniform in

any system as the model was trained with a normalized data set

that is independent of scale problems.

Chennai has the highest probability of failure among the

sites, according to the conclusions of the case study research. In

addition, criterion and alternative selection has a significant

impact on the model findings in Table 6.

The importance of the variables was considered based on

normal conditions; it depicts no information regarding the

process to optimal performance efficiency of the converter.

However, the importance variable by estimated MCDM

depends on the information retrieved from the literature

survey of a certain number of reports.

Figure 3 shows the comparison of predicted and output data,

as estimated by the selected model. The distribution of residual

value is depicted in Figure 2.

4.1 Objective equations

Using twenty-one input and one output parameter,

the wave energy farm designs of five sites were

estimated. The network was trained using the

GMDH technique and Supplementary Equation S54 in

Supplementary Annexure S1 shows the number

of hidden layers and the value of the weight vector for each

input.

Y1 � −0.10507 −N707*N2*0.103405 +N7072*0.0782601

+N2*1.08516 +N22*0.0159021

where Y1 = model output and N2 and N707 are the sub-model

output as given in Supplementary Annexure S1.

FIGURE 2
Figure showing the distribution of residual value for the model #21ANG1.

TABLE 6 Table showing the performance analysis of five locations.

Serial No Location Index value

1 Chennai (10.91185 N, 80.58117 E) 0.21571

2 Kikanda (3.78758 N, 80.64202 E) 0.17164

3 Poducherry (15.51106 N, 81.52342 E) 0.20960

4 Bhubaneswar (17.87055 N, 84.38411 E) 0.21019

5 Vishakapattanam (19.19293 N, 85.70243 E) 0.19284
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4.2 Multiple linear regression model

The objective equation of model was developed by

Y � b0 + b1*x + b2*x + b3*x + b4*x + b5*x + b6*x.

In the current analysis, it was discovered that the GMDH

trained model had acceptable performance metrics. To establish

a relationship between the dependent and independent variables,

a multiple linear regression was run on the dataset. The PI test for

the MLRM model is not as significant as 0.122945. Correlation

was calculated to be 0.992075, indicating that the developed

model suited the dataset well. The MLRM model performed

better at predicting in Table 7 than the regression model, which

was determined by the MSE, which was obtained for both cases

and was 0.03498 for the regression model and 0.0367 for the

GHDH model. To validate the model, the created GHDH and

regression model were both given the test dataset. The regression

model was created utilizing the entire dataset, which included the

test data points, but the MLRM model was never exposed to the

test dataset during training. The GMDH method required to

include data points that were near to the minimum and

maximum values of the dependent variable when creating the

test dataset.

4.3 Sensitivity analysis

Each number in the sensitivity analysis represents the

difference between the expected result and the level of

uncertainty associated with a single input variable. It was

observed that with a change in each of the input variables

(i.e., wave height, shipping density, wave period, water depth,

FIGURE 3
Figure showing the distribution of residuals derived from observed and predicted output for #21ANG1.

TABLE 7 Performance index of multiple linear regression model.

Mean square
error (MSE)

NSE (NE) PBIAS (B) RSR (SR) Correlation (R) Performance index
(PI)

0.03498 0.097307 0.012012 3.288013 0.992075 0.122945

Frontiers in Energy Research frontiersin.org10

Ghosh et al. 10.3389/fenrg.2022.1009987

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1009987


distance from the coast, wind speed, salinity, regular wave,

number of WECs, the distance between WECs, wave

incidence direction, array layout, length of cable connecting

to shore, buoy diameter, rated power, converter efficiency,

unit cost, operating and maintenance costs, capital costs,

taxes and rate of energy charge per unit) there is a change

in output, which depicts the sensitivity of the model with

respect to each of its inputs in Figure 4. The most sensitive

parameter was wave period, and the least sensitive was array

layout.

6 Conclusion

The goal of this research is to evaluate the likelihood of

wave energy farms failing. In this case, 12 alternative

models were created using MCDM approaches and

polynomial neural networks. Each model’s performance

was estimated using performance indicators such as RMSE,

MAE, r, and PBIAS. The model with the best performance

efficiency was used to forecast the chance of failure. The

selected model was also utilized to determine the likelihood

of failure in five areas along the Indian coastal strip. The

length of the cable connecting the converter (as determined by

the X and P chart methods), the distance between WEC (as

determined by the R Chart method), and converter

efficiency (as determined by the citation frequency) were

found to be the most important parameters in terms of

failure probability.

Among the 12 models, the 21ANG1 developed model was

found to have the highest performance efficiency (18.959).

According to the sensitivity analysis results, the sensitivity

and weight of importance of the variables are in exact

coherence. The case study results show that the Chennai

region has the highest failure probability compared to the

other four regions, whereas the Kikanada coastal belt has the

lowest chance of failure. This means that farms installed in the

Kikanada region have the potential for higher conversion

efficiency than in the Chennai region. Although the model

has some drawbacks, such as if the method of ranking or

decision making is changed, then the importance of the

parameter may also change, and this will also impact the

results. Again, the selected factors may also change if more

resources are analyzed. Such drawbacks can be compensated for

FIGURE 4
Figure depicting the input variable’s sensitivity analysis.
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if specific policies are initiated so that uniformity among all the

feasibility methods can be maintained.
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