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Abstract

Solar wind turbulence is anisotropic with respect to the mean magnetic field. Anisotropy leads to ambiguity when
interpreting in situ turbulence observations in the solar wind because an apparent change in the measurements
could be due to either the change of intrinsic turbulence properties or to a simple change of the spacecraft sampling
direction. We demonstrate the ambiguity using the spectral index and magnetic compressibility in the inertial range
observed by the Parker Solar Probe during its first seven orbits ranging from 0.1 to 0.6 au. To unravel the effects of
the sampling direction, we assess whether the wave-vector anisotropy is consistent with a two-dimensional (2D)
plus slab turbulence transport model and determine the fraction of power in the 2D versus slab component. Our
results confirm that the 2D plus slab model is consistent with the data and the power ratio between 2D and slab
components depends on radial distance, with the relative power in 2D fluctuations becoming smaller closer to
the Sun.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830)

1. Introduction

The nature of anisotropy is an important property of solar
wind turbulence. Decades of in situ solar wind observations
have found that low-frequency turbulence is dominated by
incompressible fluctuations. The magnetic fluctuations are
mostly transverse to the mean magnetic field. Solar wind
turbulence can exhibit wave-vector anisotropy in that more
power is often found in fluctuations with perpendicular wave
vectors. The nearly incompressible theory of magnetohydro-
dynamic (MHD) turbulence suggests that solar wind turbulence
in the plasma β∼ 1 or =1 regimes is dominated by a 2D
component whose wave vectors are perpendicular to the mean
magnetic field with a minority contribution due to slab
fluctuations whose wave vectors are along the mean magnetic
field (Matthaeus et al. 1990; Zank & Matthaeus 1992, 1993;
Hunana & Zank 2010; Zank et al. 2017). The 2D and slab
turbulence model is consistent with many previous observa-
tions (Bieber et al. 1994, 1996; Zank et al. 1996; Smith et al.
2001; Oughton et al. 2011; Wiengarten et al. 2016; Adhikari
et al. 2017, 2020) and can explain the observed wave-vector
anisotropy of solar wind turbulence, i.e., the fluctuation power
tends to be stronger when the spacecraft samples perpendicular
to the mean magnetic field (Zank et al. 2020). The
compressible fluctuations in the nearly incompressible (NI)
theory arise at the second order, and the level of compressi-
bility depends on parameters such as the plasma beta, but the
exact relation is unclear.

The wave-vector anisotropy of solar wind turbulence can be
assessed based on the sampling angle between the spacecraft
trajectory and the mean magnetic field thanks to Taylor’s
hypothesis (Dasso et al. 2005; Horbury et al. 2008; Wang et al.
2019). Since the solar wind velocity is usually in the radial

direction, the sampling angle can be approximated by the angle
between mean magnetic field and radial direction. By
compiling measurements of solar wind turbulence with angular
dependence, the wave-vector anisotropy can be investigated.
Such studies have been undertaken by numerous authors. For
example, Matthaeus et al. (1990) investigated the anisotropic
turbulence correlation function, which suggests a 2D and slab
decomposition of turbulence. Bieber et al. (1996) developed a
method that quantifies the power fraction in the 2D and slab
components based on the functional form of the angular
dependence. Their results suggest that ∼80% of the energy is
contained in the 2D turbulence, which is consistent with the
turbulence anisotropy inferred from cosmic-ray mean-free-path
observations (Zhao et al. 2017, 2018). A particularly interesting
situation is where the wave vector is purely parallel, which has
been studied recently by Telloni et al. (2019); Zhao et al.
(2020). Both reported a −5/3 power-law index, which is
inconsistent with the “critical balance” prediction of −2
(Goldreich & Sridhar 1995) but can be explained by NI
MHD theory (Zank et al. 2020, 2021). The wavelet technique
has also been applied to the study of wave-vector anisotropy
(e.g., Horbury et al. 2008). The wavelet method considers a
scale-dependent local mean magnetic field, which may differ
from the global mean field especially when the fluctuations are
strong. We opt not to use the wavelet method as the 2D/slab
turbulence geometry requires a strong global mean field to
sensibly distinguish between the two components (Oughton &
Matthaeus 2020).
The Parker Solar Probe (PSP; Fox et al. 2016) provides

in situ measurements of solar wind turbulence within 0.3 au
from the Sun for the first time. In this paper, we investigate
magnetic turbulence anisotropy in the inertial range using PSP
data, which allows us to assess the radial evolution in the inner
heliosphere. Previous work by Chen et al. (2020) considered
the magnetic compressibility as defined by the ratio between
magnetic-field magnitude fluctuations and total magnetic-field
fluctuations. Using the PSP data from the first orbit, they
conclude that magnetic compressibility increases with radial
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distance and plasma beta, which they interpret as a change in
the slow magnetosonic mode fraction with radial distance.
However, the angular dependence or wave-vector anisotropy is
not taken into account by Chen et al. (2020). As the
interplanetary magnetic field follows the Parker spiral shape
(Parker 1958) on average, the angle it makes with radial
direction also changes with radial distance from the Sun, which
then affects the turbulence properties. This effect needs to be
disentangled from observations before the nature of the radial
evolution of turbulence can be revealed. This effect has not
been considered in previous work using PSP data. We present
an analysis of turbulence anisotropy based on its angular
dependence. We further quantify the wave-vector anisotropy
based on the methodology of Bieber et al. (1996) and illustrate
its radial evolution.

2. Methods

One way to quantify the anisotropy is to calculate several
indices based on the 2D/slab turbulence model. Here, we use
the method developed by Bieber et al. (1996). The magnetic-
field fluctuations are transformed into coordinates where the z
axis represents the mean magnetic-field direction, the x axis is
in the plane containing the radial direction and z direction, and
the y axis completes a right-handed system, which is
perpendicular to both the radial and z direction. The power
spectral density (PSD) can then be calculated in the new
coordinates. We note that the spacecraft measured PSD in
subsequent analysis is the 1D reduced spectrum. The diagonal
components of the spectral matrix Pxx, Pyy, and Pzz are the
power contained in the fluctuations along the three coordinates.
Evidently, Pzz represents the longitudinal fluctuation power,
and Pxx and Pyy denote the incompressible transverse
fluctuations. The ratio (Pxx+ Pyy)/Pzz can be used as a
measure of the compressibility, i.e., the higher the ratio, the less
compressible is the turbulence. This stems from the limit of
small amplitude MHD waves where Pzz is nonzero only for
compressible magnetosonic waves. However, this is not valid
for large-amplitude (aka, spherically polarized) Alfvén waves,
which can have a finite Pzz (Barnes & Hollweg 1974; Matteini
et al. 2015). For the incompressible part of the turbulence,
when the mean field is along the radial direction, the spacecraft
will sample mostly slab fluctuations by Taylor’s hypothesis. In
this case, one would expect Pxx= Pyy if there is no anisotropy
in the perpendicular plane. As the angle between the mean
magnetic field and radial direction θBR increases, the spacecraft
can sample more 2D fluctuations with perpendicular wave
vectors. At θBR= 90°, only 2D fluctuations are sampled with
measurably different Pxx and Pyy. The change of the ratio
Pyy/Pxx with θBR is thus a measure of the 2D versus slab power
ratio. More precisely, we use the formula derived in Bieber
et al. (1996) for the ratio between the 2D and slab components
(see also Saur & Bieber 1999),
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Here, C2 and Cs represent the relative amplitude of power in 2D
and slab components, and θBR the angle between the mean
magnetic field B0 and the radial direction. In deriving
Equation (1), it has been assumed that the fluctuations follow
power-law distributions in which the spectral indices q are the
same for both perpendicular (Pyy) and parallel (Pxx)

fluctuations. Equation (1) shows that for pure slab turbulence
(C2= 0), the ratio is unity for all sampling angles θBR. In the
other limit of Cs= 0, the ratio is also constant for all θBR, but
has a different value depending on q. In general, Equation (1)
allows us to infer Cs and C2 by probing the variation of the
ratio Pyy/Pxx as a function of the angle θBR. This is the basis of
our subsequent analysis. Zank et al. (2020) have generalized
expression (1) to allow for different spectral indices qyy and qxx
for the 2D and slab power-law distributions. This more
extended analysis will be presented in a subsequent paper.

3. PSP Data Overview and Results

We use Level 2 magnetic-field data measured by the PSP
FIELD/MAG instrument (Bale et al. 2016) and Level 3 plasma
proton data measured by the SWEAP/SPC instrument (Kasper
et al. 2016). Our analysis uses the first seven orbit measure-
ments of PSP during the period from 2018 November to 2021
February. However, the third orbit is excluded due to a large
number of data gaps in magnetic-field measurements and SPC
plasma data are not available during the third outbound
trajectory (Zhao et al. 2021). For each orbit, we investigate an
approximately one-month time-period data around each
perihelion, with radial distances ranging from each perihelion
to 0.6 au. The magnetic-fluctuation anisotropy of each orbit is
analyzed separately, and the time intervals for analysis are
chosen to be 1 hr in length. It is well known that various solar
wind turbulence features are speed-related (e.g., Dasso et al.
2005; Weygand et al. 2011; Adhikari et al. 2021b), and the fast
wind is usually found to be dominated by outward propagating
Alfvén waves. Here, we exclude intervals with an average
speed greater than 500 km s−1 when plasma data are available.
To remove intervals associated with large-scale structures, e.g.,
heliospheric/strong current sheet crossings (Phan et al. 2021),
two criteria are used in each interval: (i) the standard deviation
of the angle between local magnetic field at each data point and
the radial direction should be smaller than 40°, and (ii) the ratio
between the variance in the magnetic-field magnitude fluctua-
tions and the variance in the total magnetic-field fluctuations
should be smaller than 0.3. If any of these criteria are not met,
the interval is discarded. For the remaining intervals, we
calculate the angle between the mean magnetic field (estimated
in 1 hr interval) and the radial direction θBR. We require that
0°� θBR� 90° for each interval and do not distinguish
between sunward and antisunward directions. The in situ
measured magnetic-field data in RTN coordinates with a
cadence of ∼0.22 s is then projected to the mean field-aligned
XYZ coordinate system defined in Section 2. After projection,
we calculate the PSD of each component (i.e., BX, BY, and BZ)
using a standard Fourier transform method. To describe the
inertial-range fluctuations, the PSD of each component and the
total trace spectrum in the frequency range of
0.01 Hz� fsc� 0.1 Hz is fitted to a power law separately when
a power-law form is clearly observed. We have determined that
the selected frequency range falls well within the inertial range
for the radial distance at 0.1–0.6 au. The fitted spectral
exponents and amplitudes of the fluctuations calculated by
integrating the PSD over the frequency range 0.01 Hz–0.1 Hz
are used in the following anisotropy analysis.
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3.1. Radial and Sampling Angle Dependence of Turbulence

We analyze the magnetic-field data from the first seven
orbits of the PSP, and we present mainly the results of the fifth
orbit here as examples. Figure 1 shows the power-law index q
of the magnetic trace spectrum over the frequency range of
0.01 Hz� fsc� 0.1 Hz as a function of radial distance R and
color coded by angle θBR during PSPʼs fifth (left panel) and
seventh (right panel) orbits. The data are from orbit 5 between
2020 May 15 and June 28, with a radial distance of 0.13 to 0.6
au. The seventh orbit data are from 2021 January 6 to February
9 and the radial distance ranges from 0.1 to 0.6 au. Two
horizontal dashed lines indicate the −1.5 Iroshnikov–Kriach-
nan (IK) spectrum and −5/3 Kolmogorov spectrum. The blue
line with crosses shown in each panel represents the average
values of the spectral indices, which are calculated in 0.05
au bins.

The figure suggests that the spectrum is shallower (smaller |
q|) closer to the Sun, which is consistent with previous results
(Chen et al. 2020). However, the color map indicates that the
radial dependency may depend quite strongly on the angle θBR
which in turn tends to increase with increasing radial distance.
It is unclear whether the variation in power-law index is due to
the radial evolution of intrinsic turbulence properties or the
sampling direction of the spacecraft.
In the left panel of Figure 2, we show the dependence of the

transverse-to-longitudinal power anisotropy (Pxx+ Pyy)/Pzz,
which is a measure of the magnetic compressibility, on the
sampling direction θBR and radial distance R. The horizontal
dashed line corresponds to the well-known value of
(Pxx+ Pyy)/Pzz= 9 found by Belcher & Davis (1971)
originally using Mariner 5 data. The black line with crosses
denotes the average value of (Pxx+ Pyy)/Pzz computed over
nine bins and each bin has a width of 10°.

Figure 1. The power-law index q of the magnetic trace PSD as a function of radial distance R during PSPʼs fifth and seventh orbits. The color map indicates the angle
between the mean magnetic field in each 1 hr interval and the radial direction θBR. The blue lines with crosses represent the average values of the spectral indices.

Figure 2. The left panel shows statistics of the transverse-to-longitudinal (Pxx + Pyy)/Pzz power anisotropy (compressibility) as a function of θBR during PSPʼs fifth
orbit. The right panel shows the transverse power anisotropy Pyy/Pxx as a function of θBR. The color map indicates the radial distance R dependence. The black and
blue lines with crosses in the left and right panels represent the average values of (Pxx + Pyy)/Pzz and Pyy/Pxx, respectively.
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When PSP is close to the Sun, the sampling angle θBR tends
to be quasiparallel. In general, the power anisotropy
(Pxx+ Pyy)/Pzz decreases as does the sampling angle θBR
increases. When θBR is quasiparallel, the average value of
(Pxx+ Pyy)/Pzz is larger than 9. However, when θBR increases
to greater than 30°, (Pxx+ Pyy)/Pzz is obviously less than 9 and
the measured fluctuations appear to be more compressible
when θBR approaches 90°. Similar to Figure 1, the color map
indicates that the angular dependence and the radial depend-
ence may be related. The right panel of Figure 2 shows the
transverse fluctuation power anisotropy Pyy/Pxx as a function
of the field orientation θBR and color coded by the radial
distance R. The blue line with crosses represents the average
value of Pyy/Pxx in each 10° bin. It’s clear that Pyy/Pxx

increases as θBR approaches 90°, which tends to occur at larger
distances. The changes of Pyy/Pxx with θBR is generally
consistent with Equation (1) and implies again that the field
orientation is important and cannot be neglected in determining
the overall power anisotropy. We note that both of Pyy and Pxx

depend not only on θBR but also on the radial distance R. This
is partly because the θBR and R are themselves related, i.e., θBR
tends to increase with R. However, there may be transport
effects associated with radial distance R as well, e.g.,
Pxx(R)∝ Rα, Pyy(R)∝ Rβ, and α≠ β. In fact, all three
components, Pxx, Pyy, and Pzz can change differently with
θBR at a fixed radial distance, possibly including the effects of
sampling. In Section 3.2, we attempt to isolate the angular
dependence of Pyy/Pxx from the radial dependence.

For completeness, now consider the dependence of
(Pxx+ Pyy)/Pzz with the proton plasma beta βp and δB/B0

(the ratio between magnetic-fluctuation amplitude and mean
field strength) following Smith et al. (2006); Pine et al. (2020).
The left panel of Figure 3 shows that the turbulence tends to be
more compressive at higher plasma beta and the anisotropy
follows a b-4.65 p

0.56 relation. The right panel shows that the
compressibility is higher when the magnetic-fluctuation ampl-
itude is larger with a power-law relation ( )d -B B1.1 0

0.76. The
(Pxx+ Pyy)/Pzz versus δB/B0 relation shown in the right panel
of Figure 3 is remarkably consistent with the results reported by

Smith et al. (2006) using ACE data (displayed as the blue
dashed line in the figure). The (Pxx+ Pyy)/Pzz versus βp
relation in Figure 3 has a power-law slope that is also roughly
consistent with Smith et al. (2006) though the multiplication
factor is somewhat different. The angle θBR may play a role in
explaining the difference as small-angle intervals tend to be
much more common closer to the Sun and these intervals
appear to deviate from the reference line (blue dashed line)
more than large θBR intervals. We also note that the proton
temperature used in this study is from the SPC instrument
(Kasper et al. 2016), which does not measure the 3D proton
temperature as does the SWEPAM instrument on ACE
(McComas et al. 1998). Due to the temperature anisotropy, it
is likely that the measured proton temperature is overestimated
when the angle θBR is quasiperpendicular, especially when βp
is small (Huang et al. 2020). As a result, the βp value may be
overestimated in Figure 3, which may also contribute to the
difference from the Smith et al. (2006) result.
As noted by Smith et al. (2006), the two parameters βp and

δB/B0 are correlated themselves and βp seems to be the
determining factor that establishes the transverse-to-long-
itudinal power anisotropy. The negative correlation between
(Pxx+ Pyy)/Pzz and beta is consistent with simulations such as
those by Matthaeus et al. (1996) but it is still not well
understood theoretically. There is a possibility that the
parameter dependence of (Pxx+ Pyy)/Pzz shown in Figure 3
could explain the left panel of Figure 2 as more small θBR
intervals tend to be observed closer to the Sun where βp and
δB/B0 also tend to be smaller. However, we emphasize that it
may also be possible that the compressibility (Pxx+ Pyy)/Pzz

depends on the wave vector directly as the NI theory suggests
in certain limits (e.g., Zank & Matthaeus 1993).
To summarize, both Figures 1 and 2 suggest that the

turbulence properties (spectral index and magnetic compressi-
bility) depend on the field orientation θBR. It is also possible
that transport properties of the fluctuations play a role, but this
angular dependence may obscure the true nature of turbulence.
In other words, an apparent change in observed turbulence
properties may be either due to parameters such as plasma beta

Figure 3. The transverse-to-longitudinal power anisotropy (Pxx + Pyy)/Pzz as functions of the proton plasma beta βp (left panel) and the ratio of magnetic-fluctuation
amplitude and mean magnetic-field strength δB/B0 (right panel) during PSPʼs fifth orbit. The color map indicates the θBR dependence for both panels. The two solid
black lines denote power-law fits for the relation with βp and δB/B0, respectively. The two blue dashed lines are from Smith et al. (2006) and are used to fit the
corresponding relation of intervals with open field lines at 1 au.
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and fluctuation amplitude as shown in Figure 3, or the radial
distance and sampling trajectory of the spacecraft. The latter is
due to the wave-vector anisotropy of turbulence (e.g.,
Matthaeus et al. 1990; Horbury et al. 2012). While the spectral
index, magnetic compressibility, and wave-vector anisotropy
are typically regarded as independent issues, anisotropy may
affect the spectral index (e.g., the two-component spectral
theory of Zank et al. 2020 relates wave-number anisotropy and
spectral index, as does the critical balance theory of Goldreich
& Sridhar 1995), which includes identifying potential com-
pressible magnetic fluctuations in the chosen geometry (Bieber
et al. 1996; Saur & Bieber 1999). One needs to disentangle the
effects of sampling direction and radial distance (transport
effects) to study the intrinsic properties of turbulence.

3.2. 2D and Slab Model Anisotropy

One way to extract the wave-vector anisotropy information
is based on the 2D and slab turbulence model. Here, we present
results based on the methodology discussed in Section 2
(Bieber et al. 1996). Figure 4 shows the average anisotropy
Pyy/Pxx as a function of θBR. Here the averages and errors are
calculated through logarithmic averaging due to the dynamic
range of Pyy/Pxx that can vary from 0.4 to 6 as shown in
Figure 2. By doing it this way, we can remove the influence of
a few large values and make the average more representative of
the overall data set. Data from PSPʼs fifth orbit are presented
here as examples and the data are split into two groups based
on radial distance. The left panel of Figure 4 includes data
taken between 0.13 and 0.3 au while the right panel includes
data between 0.3 and 0.6 au. For both groups, the data intervals
are binned in 9 bins that are 10° wide in each. As shown in the
figure, the averaged Pyy/Pxx increases with the increasing
sampling angle θBR in both groups, which is consistent with the
2D and slab turbulence model.

As discussed before, the exact relation between Pyy/Pxx and
θBR depends on the power ratio between 2D and slab
components C2/Cs. Fitting the model Equation (1) to the data
yields the best-fit parameter C2/Cs. The best-fit models are
plotted as the red curves in both panels, which agree with the
data reasonably well. We find the ratio to be C2/Cs= 0.43 (or

30%:70%) between 0.13 and 0.3 au and C2/Cs= 1.63 (or
62%:38%) between 0.3 and 0.6 au. At smaller radial distances,
the slab component appears to be more important relative to the
2D component.
The analysis above is repeated for the other PSP orbits and

the results are compiled in Table 1. In all orbits that we
analyzed, we find a radial dependence of the wave-vector
anisotropy: the power fraction in the 2D components is larger
further away from the Sun and the slab component is more
dominant closer to the Sun. As shown earlier in Figure 1, the
spectral index |q| tends to decrease at a smaller radial distance.
We try to use a different spectral index (q=−1.5) in
Equation (1) for the small radial distance range (�0.3 au),
which is also shown in Table 1. Changing the spectral index
makes the C2/Cs ratio larger (or the fraction of 2D component
is larger), but the conclusion that the C2/Cs ratio increases with
distance still holds. At larger radial distances (0.3–0.6 au), the
2D fluctuation power usually dominates containing ∼60% of
the total transverse fluctuation power, which is slightly less
than the results obtained by Bieber et al. (1996) with ∼80% 2D
contribution. An exception is the seventh orbit where the 2D
fluctuation power is only 40%. The exact reason is unclear, but
could be due to mixing of fast solar wind or different origins of
slow solar wind. Since the solar wind is out of the field of view

Figure 4. Statistics of the transverse power anisotropy Pyy/Pxx as a function of the sampling angle θBR during PSPʼs fifth orbit. The data are split into two groups by
radial distance from the Sun. The left panel is for radial distances between 0.13 and 0.3 au; the right panel is for radial distances between 0.3 and 0.6 au. The red curves
are the model results.

Table 1
Wave-vector Anisotropy in Different PSP Orbits

Orbit C2/Cs (�0.3 au) C2/Cs (�0.3 au) C2/Cs (0.3–0.6 au)
q = −5/3 q = −3/2 q = −5/3

# 1 0.47 (32% : 68%) 0.75 (43% : 57%) 1.70 (63% : 37%)
# 2 0.11 (10% : 90%) 0.20 (17% : 83%) 1.63 (62% : 38%)
# 4 0.28 (22% : 78%) 0.47 (32% : 68%) 1.56 (61% : 39%)
# 5 0.43 (30% : 70%) 0.72 (42% : 58%) 1.63 (62% : 38%)
# 6 0.40 (29% : 71%) 0.52 (34% : 66%) 1.50 (60% : 40%)
# 7 0.25 (20% : 80%) 0.49 (33% : 57%) 0.67 (40% : 60%)

Note. The perihelion distance to the Sun is different for different PSP orbits.
The exact radial distance range in the second column also varies with orbit,
which we list as follows: 0.17–0.3 au (Orbits 1 and 2); 0.13–0.3 au (Orbits 4
and 5); 0.10–0.3 au (Orbits 6 and 7).
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of SPC during most of the time period of the seventh orbit, we
do not have enough plasma data for further study. The region
within 0.3 au from the Sun has not been explored by previous
observations. Our results indicate that the slab component
dominates in this new regime, accounting for about 60%–80%
of the total transverse power.

Based on the 2D–slab ratio that we obtain, it is likely that the
total transverse power Pxx+ Pyy increases with θBR (at least at
R> 0.3 au where Cs does not dominate C2). This allows us to
draw further conclusions about the nature of the compressible
component of turbulence from the left panel of Figure 2. As the
ratio (Pxx+ Pyy)/Pzz decreases with angle, it means that Pzz

should increase with θBR even faster than the transverse power
Pxx+ Pyy, suggesting that the compressible component Pzz

may also contain a significant 2D component. Such 2D-like
compressible fluctuations are allowed in the NI theory in the
β= 1 limit (Zank & Matthaeus 1993). A more quantitative
analysis of the compressible component is deferred to a
future work.

4. Conclusions

The Parker Solar Probe provides unprecedented opportu-
nities to study the evolution of turbulence in the inner
heliosphere. However, the presence of the turbulence wave-
vector anisotropy complicates the interpretation of observa-
tions. In this paper, we present an analysis of MHD-scale
magnetic fluctuations observed by PSP. We demonstrate that
observed turbulence properties such as the spectral index and
the magnetic compressibility depend on the sampling angle of
the spacecraft due to wave-vector anisotropy. This angular
dependence may obscure how turbulence is intrinsically related
to parameters, such as, radial distance, plasma beta, fluctuation
amplitude, etc. To unravel the effects of the sampling angle, we
analyze the wave-vector anisotropy in the context of the 2D
and slab turbulence model. The power ratio between 2D and
slab components is determined by the data and a radial
dependence is discovered.

The main conclusions of the paper are listed as follows.

1. The observed magnetic power spectrum is shallower
closer to the Sun. The radial dependence may be related
to the sampling angle θBR (between the mean magnetic
field and the radial direction) dependence because the
sampling angle tends to decrease close to the Sun due to
the form of the Parker spiral magnetic field.

2. The magnetic compressibility tends to become weaker
closer to the Sun, and is positively correlate with the
plasma beta and the magnetic-fluctuation amplitude,
consistent with previous observations (e.g., Smith et al.
2006; Chen et al. 2020). However, these dependencies
can evolve with the sampling angle dependence.

3. The spectral anisotropy of the transverse fluctuations is
generally consistent with the 2D plus slab turbulence
model.

4. We determine the fraction of power in the 2D versus slab
component using the method proposed by Bieber et al.
(1996). Exact values for each orbit are listed in Table 1.

5. The fraction of power in 2D fluctuations is smaller closer
to the Sun during all PSP orbits that we analyzed, based
on the Bieber et al. (1996) and Saur & Bieber (1999)
approach.

Finally, we list some caveats for the analysis presented in
this study, which should be addressed in subsequent studies.
(1) Our analysis of the 2D and slab turbulence decomposi-

tion assumes a single power-law index that does not depend on
the angle θBR, i.e., q in Equation (1) is a constant. While this
assumption simplifies the analysis, there is theoretical and
empirical evidence suggesting that the spectral index may
depend on the sampling angle (e.g., Horbury et al. 2008, and
also our Figure 1). For future studies, our analysis should
incorporate the possibility of a spectral index anisotropy (Zank
et al. 2020).
(2) We did not distinguish fluctuations according to the

origin of the solar wind, i.e., open versus closed field regions,
and this may reflect the different turbulence mechanisms
thought to heat the solar corona and subsequently accelerate the
solar wind. For example, Zank et al. (2018) suggest that it is
primarily the dissipation of 2D fluctuations that heat the
corona, which would make derived C2/Cs ratio observed
within ∼0.3 au understandable since it is mainly 2D
fluctuations that are absorbed. Under the mechanism proposed
by Matthaeus et al. (1999), i.e., the dissipation of turbulence
generated by counterpropagating slab fluctuations, one might
expect the opposite result (Zank et al. 2021).
(3) The third caveat is the neglect of the radial dependence

within the range R� 0.3 au and 0.3< R< 0.6 au (Adhikari
et al. 2021a). This caveat is difficult to overcome. If we refine
the binning in R, the data in each radial distance bin may not
cover the entire angular range, leading to more ambiguity in
fitting the model.
(4) We did not consider the different plasma beta regimes

when applying the Bieber et al. (1996) analysis. From a
theoretical perspective, the underlying character of MHD
turbulence is fundamentally different in a β? 1 plasma than
a β∼ 1 or =1 plasma. The 2D–slab decomposition does not
emerge in the former case where the governing incompressible
MHD equations are fully 3D.
(5) Since solar wind velocity data are not always available,

we use θBR to represent the angle between the wave vector and
the mean magnetic field. Although the solar wind velocity is
typically dominated by the radial component, the nonradial
components can have a significant contribution close to the Sun
(Kasper et al. 2019), making the difference between θBR and
θVB (angle between solar wind speed in the spacecraft frame
and the mean magnetic field) slightly larger. Thus, at this point
the results may not be very accurate near the perihelion.
The five caveats discussed above make further detailed

analysis of this problem necessary. Nonetheless, our method
shows for the first time clear wave-vector anisotropy in the new
regime being explored by PSP. The anisotropy of solar wind
turbulence provides considerable insight into its nature. Our
work shows that the solar wind data measured by PSP are
consistent with the 2D and slab model as suggested by the
nearly incompressible MHD theory. For the first time, we have
identified the changing ratio between 2D and slab fluctuations
in the inner heliosphere. Apparently, a recent work by
Bandyopadhyay & McComas (2021) also uses the Bieber
et al. (1996) approach to analyze the 2D–slab ratio using PSP
data. Their results are qualitatively consistent with ours
although they do not distinguish between different radial
distance regions. Bandyopadhyay & McComas (2021) con-
struct the 2D correlation function and find a shorter parallel
correlation length than perpendicular correlation length, which
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is opposite to typical observations for slow solar wind at 1 au
(e.g., Matthaeus et al. 1990; Dasso et al. 2005). This is also
consistent with our conclusion of an increasing slab fraction
closer to the Sun. Our results will further the understanding of
how turbulence is generated and transported in the solar wind,
and will guide the development of future solar wind turbulence
models.
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