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Power inspection plays an important role in ensuring the normal operation of

the power grid. However, inspection of transmission lines in an unoccupied

area is time-consuming and labor-intensive. Recently, unmanned aerial

vehicle (UAV) inspection has attracted remarkable attention in the space-

ground collaborative smart grid, where UAVs are able to provide full converge

of patrol points on transmission lines without the limitation of communication

and manpower. Nevertheless, how to schedule UAVs to traverse numerous,

dispersed target nodes in a vast areawith the least cost (e.g., time consumption

and total distance) has rarely been studied. In this paper, we focus on this

challenging and practical issue which can be considered as a family of

vehicle routing problems (VRPs) with regard to different constraints, and

propose a Diverse Trajectory-driven Deep Reinforcement Learning (DT-DRL)

approach with encoder-decoder scheme to tackle it. First, we bring in a

threshold unit in our encoder for better state representation. Secondly, we

realize that the already visited nodes have no impact on future decisions, and

then devise a dynamic-aware context embedding which removes irrelevant

nodes to trace the current graph. Finally, we introduce multiply decoders

with identical structure but unshared parameters, and design a Kullback-

Leibler divergence based regular term to enforce decoders to output diverse

trajectories, which expands the search space and enhances the routing

performance. Comprehensive experiments on five types of routing problems

show that our approach consistently outperforms both DRL and heuristic

methods by a clear margin.

KEYWORDS

vehicle routing problem, deep reinforcement learning, power inspection, unmanned aerial

vehicle, Kullback-Leibler divergence

1 Introduction

UAV power inspection is a promising approach for transmission line detection and
maintenance due to the immunity from limited manpower and adverse environments
Alhassan et al. (2020). UAVs are utilized to provide full coverage of all transmission line
segments defined by the pylons, where each segment is considered as a target node to
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be traversed. Accordingly, UAV power inspection can be
modeled as a traveling salesman problem (TSP) with the purpose
of minimizing the total traversal distance. Recently, with the
rapid development of the smart grid industry, the total length of
transmission lines of 220 kV and above inChina has reached 0.84
million kilometers by the end of 2021 with an annual growth rate
of 3.8% Duan et al. (2022); Prabhu et al. (2022).The tremendous
growth poses new challenges to power inspection, among which,
how to schedule UAVs to traverse such numerous target nodes
on transmission lines with high precision and high efficiency is
the most essential issue.

In this paper, we concentrate on solving large-scale TSP.
TSP, a class of vehicle routing problems (VRPs), is defined
to find the shortest possible tour traversing all cities exactly
once and back to the starting city. It has attracted considerable
attention in recent years due to its profound impact on
theoretical computer science and operational research, and
extensive real-world applications in robotics Guan et al. (2021),
logistics Baniasadi et al. (2020), electricity Sun et al. (2022), etc.
Nevertheless, TSP is generally an NP-hard combinatorial
optimization problem, and it is intractable and time-consuming
to apply an exhaustive search to obtain the optimal solution
via exact algorithms Vásquez et al. (2021). In contrast, heuristic
algorithms, such as ant colony optimization Ebadinezhad (2020)
and genetic algorithm Baniamerian et al. (2019), are able to
yield near-optimal solutions in polynomial time. However, such
heuristics methods are often guided by hand-designed rules,
which rely heavily on intuition and domain prior knowledge
Wei et al. (2022), and may lead to unsatisfactory solutions
occasionally.

In the last decade, deep learning methods have achieved
great success in a variety of artificial intelligence fields
Huang et al. (2022); Yan et al. (2022); Tang et al. (2022). Among
them, deep reinforcement learning (DRL) methods have been
leveraged to learn the underlying patterns from numerous
instances, and solve routing problems in an end-to-end
framework without the need of prior knowledge Francois-
Lavet et al. (2018). Most DRL methods follow the encoder-
decoder scheme Kool et al. (2018) and learn constructive
heuristics by adding unvisited nodes into the partial tour step-
by-step until completion. Specifically, the encodermaps the node
information into feature embeddings, and the decoder generates
the probability of selecting the next valid node at each time
step. In comparison with exact and heuristic algorithms, DRL
models achieve high computational speed and superior routing
performance.

Though showing promising results, there are still several
limitations of existing constructive DRL methods. First,
prevailing DRL methods do not obey the Bellman’s Principle
of Optimality Jones and Peet (2021) completely. To be more
specific, the constructive routing process can be considered as a
series of sequential node-selection sub-tasks. The already visited

nodes are irrelevant to the current decision. However, prevailing
DRL methods utilize a fixed context embedding which can not
reflect the dynamics of state transitions well. Hence, such a rigid
embedding over the whole graph is not suitable for all sub-tasks
and may deteriorate the solution quality. The second limitation
is that the solutions (i.e., trajectories) generated by DRL models
are not diverse enough. Conceptually, generating a group of
more diverse traversing trajectories will expand the search space
and lead to better routing results Kwon et al. (2020). However,
existing methods train one policy merely and the only source
of diversity derives from the relatively determined probability
distribution of selecting nodes, which is far from sufficient.

To tackle the above limitations, we propose a Diverse
Trajectory-driven Deep Reinforcement Learning approach,
named as DT-DRL. First, to reflect the dynamics of state
transitions, we develop an attentive context embedding by
means of exploiting the recursive attribute of routing problems.
The DRL-based TSP can be formulated as a Markov Decision
Process (MDP) abiding by existing works Kool et al. (2018);
Xin et al. (2020); Li et al. (2021a). Based on the nature of MDP
that past decisions have no effect on future decisions given the
present Song et al. (2000), if the current node and the depot (i.e.,
start point and end point of the current sub-task) are known, the
nodes already visited in the past have no effect on the traversing
order of the unvisited nodes in the future Xu et al. (2021). To
this end, we explicitly remove them in the context embedding.
And our proposed context contains the embeddings of the
current node, depot, and unvisited graph, and adjusts over time
continuously. Hence, such an informative context embedding
for selecting the next node to visit is able to boost the routing
performance. Secondly, to output diverse trajectories, we bring
in multiply decoders with identical structures but independent
network parameters to learn distinct routing patterns. During
training, a Kullback-Leibler divergence based cross entropy loss
is introduced to enforce the decoders to generate dissimilar
probability distribution of node selection. The modification is
analogous to guiding a student to approach the same problem
from diverse perspectives, and teaching him different problem-
solving thoughts. Consequently, such a student is able to solve
unseen problems better according to Bransford et al. (1986);
Kwon et al. (2020).

In order to verify the effectiveness of our proposed
approach, we conduct comprehensive experiments on five types
of routing problems: 1) TSP; 2) capacitated VRP (CVRP); 3)
orienteering problem (OP); 4) prize collecting TSP (PCTSP);
and 5) split delivery VRP (SDVRP). The experimental results
show that our DT-DRL outperforms both DRL and heuristic
methods by a clear margin, regardless of the size and type of
problems. For example, DT-DRL achieves an average reduction
of 4.64% in the optimality gap, compared to the landmark
DRL method AM Kool et al. (2018). Moreover, we also perform
generalization analysis on TSPs and CVRPs. The comparison
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results demonstrate that ourDT-DRL generalizes better on larger
scale problems in comparison with state-of-the-art methods.

The main contributions of our approach are summarized as
follows:

• We realize the importance of capturing the dynamics of
state transitions in constructive routing problems. Based
on the nature of Markov decision process that past
decisions have no effect on future decisions, we introduce
an attentive, dynamic-aware context embedding for graph
representation, which facilitates improving the accuracy of
route planning.
• We bring in multiply decoders with the same structure
but unshared parameters, and design a Kullback-Leibler
divergence based regularization term to output diverse
trajectories, which expands the search space significantly.
• We perform extensive experiments on five types of routing
problems, and the results illustrate that our proposed
method achieves highly competitive performance in route
planning.

The remainder of this paper is organized as follows. Section 2
gives a brief review of existing mainstream works. Section 3
elaborates the framework and training policy of our proposed
approach. Section 4 provides the comprehensive comparison
experiments, generalization analysis, and ablation study. Finally,
Section 5 concludes the paper.

2 Related work

In this section, we briefly review the mainstream methods
for solving vehicle routing problems, including TSPs, CVRPs,
etc. The prevalent routing methods can be categorized into three
types: exact methods, heuristic methods, and reinforcement
learning-based methods.

2.1 Exact methods

Over the past decades, exact methods are the most well-
known ones to solve vehicle routing problems, as they are
guaranteed to find the optimal solution. Exact solvers, such
as branch-and-bound Arigliano et al. (2018), branch-and-price
Akca et al. (2009), and Concorde Hitte et al. (2003), apply brute-
force search to traverse all possible paths throughout the entire
solution space. However, they can only get satisfactory results
when the problem size is moderate. The execution time for
tackling large-scale routing problems is unacceptable due to
the extremely high computational complexity. Therefore, how to
search the path efficiently is an important research topic.

2.2 Heuristic methods

In contrast, heuristic methods are able to reduce the search
space and computational complexity significantly by designing
elaborated, hand-crafted rules to guide the search process.
Heuristic methods are divided into three categories as follows.

2.2.1 Evolutionary-based heuristics
Inspired by biological evolution in nature, evolutionary-

based heuristics, including genetic algorithm (GA), constructs
a population of feasible solutions first and then optimize it
progressively based on ‘the survival of the fittest’. The authors
in Baniamerian et al. (2019) update the individual solutions with
crossover and mutation operators, and retain the competitive
ones according to the roulette wheel selection. The authors
in Sethanan and Jamrus (2020) design a hybrid differential
evolutionary router involving genetic operators with the fuzzy
logic controller.

2.2.2 Swarm intelligence-based heuristics
Swarm intelligence-based heuristic methods, such as particle

swarm optimization (PSO) and ant colony optimization (ACO),
are illuminated by group behaviors of various organisms. The
authors in Duan et al. (2021) incorporate the encoder-decoder
scheme and robustness metric, and develop a robust PSO
approach to solve VRPs with time windows. The authors
in Ebadinezhad (2020) propose a novel ACO algorithm with
dynamic evaporation strategy to enhance the convergence speed.

2.2.3 Solver-based heuristics
Mathematical linear programming solvers, such as Gurobi

Muley (2021), LKH-3 Helsgaun (2017), and Google OR Tools
Gunjan et al. (2012), are also able to handle combinatorial
optimization problems including VRPs, with the advantages of
generality and portability. However, such heuristic paradigms
all rely heavily on the domain prior knowledge and engineering
experience, and can not receive superior performance on large-
scale, complex problems.

2.3 Reinforcement learning-based
methods

Illuminated by the recent advances in deep learning, the
exploration of utilizing deep reinforcement learning methods
to tackle routing problems has been emerging vigorously.
Without the need of hand-crafted rules and domain prior
knowledge Li et al. (2021b), DRL methods can be adapted to
solve varied and flexible routing scenarios Bao et al. (2020);
Yang et al. (2022).We classify theDRLmethods into two flavours
according to the solution process.
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2.3.1 Construction-based deep reinforcement
learning

Construction-based DRL methods choose one of the
unvisited nodes to join the current part at each step, and
provide a complete solution eventually. Constructive models are
trained to learn a probability distribution of selecting nodes
to form paths with minimum length from scratch. Attention
model (AM)Kool et al. (2018) is a landmark achievement, which
introduces a transformer-based encoder-decoder architecture
as the policy network and receives excellent results. Besides,
the authors in Kwon et al. (2020) further improve the state-
of-the-art performance by exploring diverse rollouts and data
augmentation strategies.

2.3.2 Improvement-based deep reinforcement
learning

Unlike the constructive DRL, the improvement-based
DRL models continuously refine the existing path in order to
obtain a more optimal solution. Most studies on improvement
DRL usually hinge on local search algorithms, including
node swap Chen and Tian (2019), 2-opt Wu et al. (2021) and
so forth. Dual-Aspect Collaborative Transformer (DACT)
Ma et al. (2021) learns characteristics of the nodes and positions
separately, and thus incompatible correlations can be eliminated.
Nevertheless, both construction and improvement DRL
methods suffer from several problems, like weak generalization
ability.

3 Methodology

In this section, we first introduce the common objective
function of routing problems and reformulate it as a
Markov Decision Process. Second, we propose a novel
deep reinforcement learning-based router, namely DT-DRL,
and detail the framework of the elaborated encoder and
decoder. Finally, we describe the training policy of our
approach.

3.1 Formulation

We introduce the proposed DT-DRL model in terms of TSP.
For other routing problems, the model is the same, while the
input and mask are supposed to be modified slightly, which
is discussed in Kool et al. (2018). Suppose xi be the coordinate
of the ith node and x0 be the coordinate of the depot. Thus,
the input to the model is the coordinate matrix of all nodes
X = [x0; x1; ⋯ ; xN], where N is the number of all non-depot
nodes. The output A can be viewed as a permutation of nodes
(a1,a2,…,aN), where ai represents the index of the selected node
at step i. Departing from the original depot xo, the objective of
routing problems is to minimize the total traversal length L(A|s)

of instance s.

L (A|s) = ‖xaN − xa0‖2 +
N

∑
i=1
‖xai − xai−1‖2, (1)

where ‖⋅‖2 denotes L2-Norm. Accordingly, this kind of path
optimization issue can be regarded as a node-selection problem
with N time steps.

Deep reinforcement learning has received a broad range
of attention because of its excellent sequential decision-making
capability in the past decade. Thus it is suitable to tackle such
routing problems. Here, we reformulate the representative TSP
as a Markov decision process, which is defined by a 5-tupleM =
{S,A,τ,R,θ}.Thedescriptions of the state space S = (s0, s1,…, sN),
action sequence A = (a1,…,aN), transition rule τ, cumulative
reward R, and policy parameters θ are detailed below.

State: The state st of MDP describes a partial tour of TSP at
the current step t, i.e., a sequence of previously selected nodes
a1:t .

Action: The action at ∈ {{1,2,…,N}\{a1:t−1}} represents
selecting one of the unvisited nodes at time step t. How nodes
are selected at each time step depends on the policy network of
the model, which is one of the most important parts of DRL.

Transition:The current action at converts the precious state
at−1 to the current state st according to the transition rule τ. In
the MDP, the state transition rule we use is deterministic, i.e.,
p(st|at , st−1) = 1.

Reward: Following the existing works Kool et al. (2018);
Kwon et al. (2020); Ma et al. (2021), we define the cumulative
reward for instance s as the opposite of the total length: R =
−L(A|s).

Policy: In our DRL-based approach, we focus on learning a
constructive stochastic policy network, parameterized by θ, to
generate a complete path from the initial state s0. Accordingly,
the joint probability of this MDP can be expressed based on the
chain rule:

pθ (A|s0) =
N
∏
t=1

pθ (at|st−1)pθ (st|at, st−1) , (2)

where we omit the subscript θ afterwards for brevity.

3.2 Overall framework of our approach

We build on the milestone AM Kool et al. (2018) and design
a Diverse Trajectory-driven DRL approach to learn better route
planning from multiply perspectives. Our DT-DRL leverages a
transformer-based neural network to maximize the cumulative
reward of the MDP, which consists of three components: 1)
multi-head self-attention encoder; 2) diverse trajectory-driven
decoder; and 3) cross entropy loss-based training policy. The
overall framework of our DT-DRL is illustrated in Figure 1.
The encoder embeds the node coordinate matrix into node
embeddings. Then, the decoder execute N steps and select the
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FIGURE 1
Overall framework of our proposed approach. The square pentagon represents the depot and the circle represents the non-depot node to be
traversed. MHA, TU, BN, and FFN are short for the multi-head attention, threshold unit, batch normalization, and feed-forward network, which
will be detailed in Sections 3.3, 3.4.

best node per time step, based on the node embeddings and the
current context embedding. The whole model is optimized via
policy gradient.

To better capture the dynamics of state transfer, our DT-
DRL makes three branches of modifications: 1) we bring in
a threshold unit to enhance the traditional encoder for high-
quality node mapping; 2) we depict a attentive context in the
decoder, which removes the irrelevant impact of visited nodes;
3) we introduce a regularization to encourage decoders to output
diverse trajectories and learn distinct routing strategies. In the
following, we describe how to implement node embedding
during encoding in Section 3.3; how to construct the context in
the process of decoding in Section 3.4; and how to optimize our
model via policy gradient in Section 3.5.

3.3 Encoder

The encoder takes the two-dimensional node coordinate
matrix X as input and maps them into high-dimensional node
embeddings through a linear projection:

E(0) = XWx +Bx, (3)

where Wx and Bx are learnable parameters. The initial node
embeddings E(0) = [e(0)1 ;⋯ ;e

(0)
N ] ∈ ℝ

N×de are updated using L
attention layers, each of which contains a multi-head attention
(MHA) sublayer and a node-wise feed-forward network (FFN)
sublayer. The core of MHA sublayer is expressed as follows:

Qh,Kh,Vh = EW
Q
h ,EW

K
h ,EW

V
h , (4)

Ah = Softmax(
QhK

T
h

√dk
)Vh, (5)

MHA (E) = Concat (A1,A2,…,AH)WO, (6)

where WQ
h , W

K
h ∈ ℝ

de×dk , and WV
h ∈ ℝ

de×dv are trainable query,
key, amd value matrices, WO ∈ ℝHdv×de is a learnable parameter
matrix to calculate the output of MHA sublayer,H is the number
of multi-head attention.

Inspired by the gate-like aggregation Parisotto et al. (2020)
in vision tasks, we propose a novel threshold unit (TU) for
better state representation learning, compared to the direct
skip connection He et al. (2016). In our DT-DRL, we replace
the residual operation with a threshold-based connection.
Specifically, the weight coefficient calculated from the input
matrix Ein is assigned to the output matrix Eout:

TU(Ein,Eout) = Ein + Sigmoid(EinW
G +BG) ⊙Eout, (7)

where WG and BG are trainable matrices, and ⊙ denotes the
Hadamard product. Let E(l−1) be the output of the (l− 1)-th layer.
Hence, the output of the lth MHA sublayer can be calculated as:

E(l)MHA = BN(TU(E
(l−1),MHA(E(l−1)))) , (8)

where BN(⋅) is the batch normalization operator. The operations
are similar in the FFN sublayer. Given the input E(l) to the lth
FFN sublayer, the output E(l) is defined as follows:

E(l) = BN(TU(E(l)MHA,FFN(E
(l)
MHA))) , (9)

where FFN(⋅) is the feed-forward operator, containing two
learnable linear projections and a ReLU activation in between.
Therefore, the output of our encoder are node embeddings E(L) =
[e(L)0 ;e

(L)
1 ;⋯ ;e

(L)
N ], where we omit the superscript (L) in the

process of decoding below.
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FIGURE 2
Constructive path searching process of our DT-DRL. After encoding, the node coordinates are projected to node embeddings, which remain
unchanged throughout the entire decoding process. Afterwards, for each time step of decoding, one of the unvisited nodes will be selected. The
resulting output is a sequence of nodes, representing the final route. In our approach, we seek to capture the dynamics of state transitions by
means of modeling visited and unvisited graph. And the future traveling order depends merely on the current node, depot and unvisited graph.

3.4 Decoder

In order to output diverse trajectories, our DT-DRL
features M decoders with the same structure but independent
parameters. Each decoder, indexed by m, generates the
probability pm(at = i|st−1) of selecting the next valid node i at
time t. Traditionalmethods Kool et al. (2018); Kwon et al. (2020)
usually leverage the entire graph embedding e = ∑Ni=1

1
N
ei as the

map information in the context, which can not capture the state
transfer dynamics. In contrast, our proposed approach ignores
the extraneous effects of nodes that have already been visited and
proposes a more informative time-varying context embedding
ct :

ct = Concat(mean{eat:N} ,max{eat:N} ,e0,et−1)W
C, (10)

mean{eat:N} = eat:N =
1

N− t+ 1

N

∑
i=t

ei, (11)

max{eat:N} =max ei, i ∈ {t,…,N} , (12)

where WC ∈ ℝ4de×de is a learnable parameter matrix for
dimension transformation, e0 and et−1 are embeddings of the
depot and current node, and the superscript (L) for node
embeddings is omitted for brevity.

Afterwards, we compute a new context ̂cmt for decoder m at
time t through a MHA block, which is motivated by the glimpse
layer in Bello et al. (2016). Unlike the MHA in our encoder, the
keys and queries in the decoder are calculated from the node
embeddings ei, and the only query comes from the context
embedding ct . And then, we calculate the compatibilities umi via
a single attention head and clip the results within [−C,C] for
better exploration according toEq. 15. Finally, we obtain the final
output probability pmθ (at = i|st−1) of selecting node i for decoder
m at time t through a softmax function:

̂cmt =MHA(E(L)) , (13)

qm,km,vm = ctW
Q,C
m , eiW

K,C
m , eiW

V,C
m , (14)

umi = C tanh(( ̂c
m
t W

Q,G
m )(eiW

K,G
m )

T/√dk), (15)

pmθ (at = i|st−1) =
eu

m
i

∑
j
eu

m
j
, (16)

where WQ,C
m , WK,C

m , WQ,G
m , WK,G

m ∈ ℝde×dk , and WV,C
m ∈ ℝde×dv

are learnable matrices in our decoder. The constructive path
searching process during decoding is illustrated in Figure 2.

3.5 Training policy

3.5.1 Exploration with multiply trajectories
Our DT-DRL starts with sampling M solution trajectories
{A1,A2,…,AM}, each of which can be considered as a set of
action sequences generated by a decoder:

Am = (am0 ,a
m
1 ,…,a

m
N) , m = 1,2,…,M. (17)

For all trajectories, the depot node a0 is fixed. Therefore, we
aim to design a regularization to encourage different decoders
to generate diverse non-depot starting nodes a1, and thus the
model is able to learn distinct routing patterns and output diverse
trajectories. A Kullback-Leibler divergence based cross entropy
(CE) loss LCE is imposed to diversify each pair of the output
probability distributions fromM decoders:

LCE = −DKL = −
M

∑
i=1

M

∑
j=1
∑
a1

piθ (a1|s0) log
piθ (a1|s0)

pjθ (a1|s0)
. (18)

Such exploration is only computed on the selection of the first
non-depot node, and thus the increase in computational time is
small compared to the routing gain. Conceptually, the core idea
of our DT-DRL is analogous to guiding a student to approach
the same problem from diverse perspectives, and teaching him
different problem-solving thoughts.

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2022.1054859
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Guan et al. 10.3389/fenrg.2022.1054859

FIGURE 3
Training policy of our DT-DRL. We adopt two (multiply) decoders
for demonstration.

3.5.2 Reinforcement with greedy rollout
baseline

Given an input instance s, each decoder individually
generates a trajectory Am with the probability distribution
pθ (A

m|s). To maximize the expected reward R = L (A|s), we
define the reinforcement lossLRL (θ|s) = ∑Mm=1𝔼pθ(Am|s) [L (Am|s)]
and optimize it by gradient descent with the greedy rollout
baseline b(s):

∇LRL (θ|s) =
M

∑
m=1
𝔼pθ(Am|s) [(L (Am|s) − b (s))∇logpθ (A

m|s)] .

(19)

we adopt the same baseline as Am Kool et al. (2018) in order to
reduce the gradient variance and boost the convergence speed.

Overall, the training policy is illustrated in Figure 3. And our
DT-DRL model can be optimized as follows:

∇L (θ) = ∇LRL (θ|s) +ψCE∇LCE. (20)

where ψCE is the hyperparameter to balance the effect of CE loss.

4 Experiments

In this section, we first introduce the experimental setup,
evaluation metric, and implementation details. Second, we
conduct sufficient comparative experimentswith exact, heuristic,
and learning-based algorithms to verify the effectiveness
of our DT-DRL. Finally, we perform generalization and
ablation analysis to evaluate the proposed DRL approach more
comprehensively.

4.1 Experiment setting

We focus on five types of routing problems: 1) TSP; 2) CVRP;
3) OP; 4) PCTSP; and 5) SDVRP. They provide researchers with

various objectives and challenges, and are traditionally solve
by different problem-specific methods. Among which, TSP and
CVRP are the most extensively studied ones. We describe the
settings of TSP and CVRP, and the details of other variants are
shown in Supplementary Material.

For each problem, we follow the current popular
practice Kool et al. (2018); Kwon et al. (2020); Wu et al. (2021);
Ma et al. (2021) to generate instances on the fly with N = 20,
50, and 100 nodes, where we call them TSP20, CVRP20, etc.
for convenience. The coordinates of each node are sampled
randomly from the uniform distribution in a [0,1] × [0,1] unit
square. Pertaining to CVRP, the vehicle capacities are set to 30,
40, and 50 for problems with 20, 50, and 100 nodes, respectively.
The demand of each non-depot node is selected randomly from
the set of integers {1,…,9}.

All DRL-based models are trained on 100,000 randomly
generated instances on the fly and tested on 10,000 other
instances with the same distribution. For evaluation metric, we
measure the performance of our DT-DRL and other baselines
via the mean tour length Lmean, optimality gap, and total
computation time.

Gap =
Lmean − Lopt

lopt
× 100%, (21)

where Lopt indicates the optimal result. More concretely,
Concorde is leveraged to obtain the shortest length for TSP,
and the optimality gaps for other VRPs are calculated based
on Gurobi and LKH-3. In order to eliminate the influence
of the computational platform on the experimental results, all
algorithms are implemented in Python 3.8.0 and all experiments
are conducted on an Intel Core i7-12700 KF CPU and an
NVIDIA GeForce RTX 3070 GPU.

The node elements are embedded into 128-dimensional
vectors through a learnable linear projection.The encoder of DT-
DRL consists of three layers, each of which has eight attention
heads and 512-dimensional hidden features. The number of
decoders is selected to be five and each decoder takes 128-
dimensional vectors and 8-head attention. The tanh clip is
utilizedwithC = 10. Abiding by existingworksKool et al. (2018);
Kwon et al. (2020), we train the model with 50 epochs, each with
2,500 iterations. We set the batch size to 512. To contribute to
fairer comparisons and mitigate the effects of hyperparameters,
we use the same training parameters as those forDRL.Tobemore
specific, we apply Adam optimizer to train the policy network.
And the initial learning rate is set to 10–4 and decays 0.96 per
epoch. The coefficient of CE loss ψCE = 0.01 in Eq. 20.

4.2 Comparison results

We compare our DT-DRL with a variety of exact, heuristic,
and DRL-based methods, including:
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TABLE 1 Comparison results with exact, heuristic, and DRL-based baselines on TSP and CVRP. Bold numbers indicate the best results among learning-based
methods. OBmeans out of budget and “w/o.” is short for without.

Method N = 20 N = 50 N = 100

Obj Gap Time Obj Gap Time Obj Gap Time

TSP Concorde Hitte et al. (2003) 3.84 0.00% 5 min 5.70 0.00% 14 min 7.76 0.00% 1 h
LKH-3 Helsgaun, (2017) 3.84 0.00% 45 s 5.70 0.00% 6 min 7.76 0.00% 26 min
Gurobi Muley, (2021) 3.84 0.00% 8 s 5.70 0.00% 2 min 7.76 0.00% 18 min
Google OR Tools Gunjan et al. (2012) 3.86 0.52% 1 min 5.86 2.81% 5 min 8.07 3.99% 24 min
GA Baniamerian et al. (2019) 3.86 0.52% 1 min 5.85 2.63% 5 min 8.05 3.74% 23 min
ACO Duan et al. (2021) 3.85 0.26% 1 min 5.82 2.11% 4 min 7.99 2.96% 19 min
Wu et al. Wu et al. (2021) 3.84 0.00% 12 min 5.74 0.70% 16 min 8.01 3.22% 25 min
DACTMa et al. (2021) 3.84 0.00% 25 s 5.71 0.18% 1 min 7.89 1.68% 4 min
AM-greedy Kool et al. (2018) 3.85 0.26% 1 s 5.74 0.70% 2 s 8.13 4.77% 6 s
AM-sampling Kool et al. (2018) 3.84 0.00% 1 min 5.71 0.18% 24 min 7.85 1.16% 1 h
POMO w/o. augment Kwon et al. (2020) 3.84 0.00% 1 s 5.73 0.53% 2 s 7.84 1.03% 6 s
POMO ×8 augment Kwon et al. (2020) 3.84 0.00% 3 s 5.70 0.00% 18 s 7.78 0.26% 1 min

DT-DRL (Ours) 3.84 0.00% 5 s 5.70 0.00% 15 s 7.77 0.13% 38 s
CVRP Gurobi Muley, (2021) 6.10 0.00% 1 min OB OB

LKH-3 Helsgaun, (2017) 6.10 0.00% 2 h 10.38 0.00% 8 h 15.66 0.00% 14 h
Google OR Tools Gunjan et al. (2012) 6.47 6.07% 2 min 11.29 8.77% 14 min 17.20 9.83% 1 h
GA Baniamerian et al. (2019) 6.42 5.25% 2 min 11.23 8.19% 13 min 17.06 8.94% 49 min
ACO Duan et al. (2021) 6.38 4.59% 2 min 11.07 6.65% 12 min 16.89 7.85% 45 min
Wu et al. Wu et al. (2021) 6.16 0.98% 23 min 10.71 3.18% 48 min 16.30 4.09% 1 h
DACTMa et al. (2021) 6.15 0.82% 34s 10.61 2.22% 2 min 16.17 3.26% 5 min
AM-greedy Kool et al. (2018) 6.40 4.92% 1 s 10.99 5.88% 3 s 16.80 7.28% 8 s
AM-sampling Kool et al. (2018) 6.25 2.46% 6 min 10.62 2.31% 28 min 16.23 3.64% 2 h
POMO w/o. augment Kwon et al. (2020) 6.35 4.10% 1 s 10.74 3.47% 3 s 16.15 3.13% 8 s
POMO ×8 augment Kwon et al. (2020) 6.14 0.66% 5 s 10.42 0.39% 26 s 15.73 0.45% 2 min
DT-DRL (Ours) 6.12 0.33% 7 s 10.41 0.29% 25 s 15.71 0.32% 1 min

Bold values indicate the best results among the comparative methods.

1) Concorde Hitte et al. (2003): a specialized exact routing
solver;

2) Gurobi Muley (2021): a commercial linear programming
optimizer;

3) LKH-3 Helsgaun (2017): a heuristic optimization solver
achieve state-of-the-art performance on numerous VRPs;

4) Google OR Tools Gunjan et al. (2012): Mature tools for
solving combinatorial optimization problems developed by
Google;

5) GA Baniamerian et al. (2019): an evolutionary-based
genetic algorithm for solving routing problems;

6) ACO Duan et al. (2021): a swarm intelligence-based ant
colony optimization approach for tackling VRPs;

7) Wu et al. (2021): an improvement-based DRL router;
8) DACTMa et al. (2021): an improvement-based dual-aspect

collaborative transformer for solving VRPs;
9) AM Kool et al. (2018): a landmark DRL model with

attention mechanism and encoder-decoder scheme;
10) POMO Kwon et al. (2020): a competitive DRL approach

achieving state-of-the-art performance on various routing
problems;

The comparison results with baseline methods on two most
representative VRPs (i.e., TSP and CVRP) are shown in Table 1

and the results of other routing problems are also reported in
Table 2. We summarize the comparative study as follows:

• On all five types of routing problems, our proposed DT-
DRL consistently outstrips other state-of-the-art baseline
methods by a clear margin in terms of both solution quality
and computational time. It favourably demonstrate the
superiority of our algorithm for striking a better balance
between effectiveness and efficiency.
• Table 1 compares the routing performance of different
baselines on TSP and CVRP. Take a challenging TSP100 as
an example, our method achieves an average (optimality)
gap of 0.13%, which outperforms the milestone routing
model, AM-greedy, by an reduction of 4.64%. Compared
with the second-best method (i.e., POMOwith × 8 instance
augmentation), the optimality gap of our DT-DRL is
reduced by half and the computational time consumed is
decreased by 36.67% at the same time.
• Pertaining to CVRP, our approach achieves the best
optimality gap of 0.33%, 0.29%, and 0.32% with 20, 50,
and 100 nodes, respectively. Take CVRP50 as an example,
our DT-DRL achieves an reduction of 5.59%, 3.18%, 2.89%,
and 1.93% in comparison with construction-basedmethods
(i.e., AM and POMO) and improvement-based ones (i.e.,
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TABLE 2 Comparison results with baselines on other routing problems includingOP, PCTSP, and SDVRP.While for OP, the smaller the value of the objective,
the better, which is contrast to other problems.

Method N = 20 N = 50 N = 100

Obj Gap Time Obj Gap Time Obj Gap Time

OP Gurobi Muley, (2021) 5.39 0.00% 16 min 16.21 0.00% 1 h 33.19 0.00% 4 h
LKH-3 Helsgaun, (2017) 5.37 0.37% 34 min 13.77 14.84% 2 h 24.16 27.21% 4 h
Google OR Tools Gunjan et al. (2012) 4.09 23.84% 52 min OB OB
AM-greedy Kool et al. (2018) 5.18 3.54% 1 s 15.64 3.28% 2 s 31.62 4.73% 5 s
AM-sampling Kool et al. (2018) 5.30 1.30% 4 min 16.05 0.74% 15 min 32.68 1.54% 54 min
POMO w/o. augment Kwon et al. (2020) 5.22 3.15% 1 s 15.74 2.66% 2 s 31.86 4.01% 6s
POMO ×8 augment Kwon et al. (2020) 5.32 1.30% 4 s 16.09 0.49% 20 s 32.87 0.96% 1 min

DT-DRL (Ours) 5.34 0.56% 5 s 16.11 0.37% 20 s 32.94 0.76% 42 s
PCTSP Gurobi Muley, (2021) 3.13 0.00% 2 min 4.48 0.00% 55 min 5.98 0.00% 3 h

LKH-3 Helsgaun, (2017) 3.13 0.00% 6 min 4.48 14.84% 1 h 5.98 0.00% 3 h
Google OR Tools Gunjan et al. (2012) 3.14 0.32% 1 h 4.51 0.67% 5 h 6.35 6.19% 5 h
AM-greedy Kool et al. (2018) 3.18 1.60% 1s 4.60 2.68% 2s 6.25 4.52% 5 s
AM-sampling Kool et al. (2018) 3.16 0.96% 5 min 4.54 1.34% 20 min 6.09 1.84% 54 min
POMO w/o. augment Kwon et al. (2020) 3.17 1.28% 1 s 4.56 1.79% 2 s 6.17 3.18% 6 s
POMO ×8 augment Kwon et al. (2020) 3.15 0.64% 5 s 4.52 0.89% 26 s 6.07 1.51% 2 min
DT-DRL (Ours) 3.14 0.32% 5 s 4.50 0.45% 24 s 6.04 1.00% 45 s

SDVRP Gurobi Muley, (2021) 6.15 0.00% 17 min 10.47 0.00% 2 h 15.97 0.00% 11 h
LKH-3 Helsgaun, (2017) 6.15 0.00% 39 min 10.47 0.00% 3 h 15.97 0.00% 23 h
Google OR Tools Gunjan et al. (2012) 6.29 2.28% 1 h OB OB
AM-greedy Kool et al. (2018) 6.39 3.90% 1 s 10.92 4.30% 4 s 16.83 5.39% 11 s
AM-sampling Kool et al. (2018) 6.25 1.63% 9 min 10.59 1.15% 43 min 16.27 1.88% 3 h
POMO w/o. augment Kwon et al. (2020) 6.34 3.09% 1 s 10.78 2.96% 4 s 16.51 3.38% 11s
POMO ×8 augment Kwon et al. (2020) 6.23 1.30% 5 s 10.55 0.76% 31 s 16.20 1.44% 3 min
DT-DRL (Ours) 6.21 0.98% 5 s 10.52 0.48% 29 s 16.16 1.19% 53s

Bold values indicate the best results among the comparative methods.

FIGURE 4
Generalization results between AM, POMO, and our DT-DRL on (A) TSPs and (B) CVRPs.

Wu et al. and DACT). Furthermore, on both TSP and
CVRP, as the problem size grows continually, it is clear that
the superiority of our algorithm becomes more and more
significant.
• Table 2 reports the comparison results on other routing
problems. It can be easily observed that our DT-DRL gets

the best objective function values, i.e., 5.34, 16.11, and 32.94,
on OP20, OP50, and OP100 severally, which outperforms
other DRL-based methods by a clear margin. AS for PCTSP,
the optimality gap of our approach is reduced by 0.32%,
0.44%, and 0.51% with 20, 50, and 100 nodes, compared to
the state-of-the-art POMOwith × 8 instance augmentation.
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TABLE 3 Ablation study of different components of our DT-DRL on TSP.

Components of our DT-DRL TSP20 TSP50 TSP100

Threshold unit Attentive context CE loss Obj Gap (%) Obj Gap (%) Obj Gap (%)

3.88 1.04 5.77 1.40 7.91 1.93
3 3.86 0.52 5.73 0.53 7.84 1.03

3 3.86 0.52 5.74 0.70 7.85 1.16
3 3.85 0.26 5.72 0.35 7.82 0.77

3 3 3.85 0.26 5.71 0.18 7.81 0.64
3 3 3.84 0.00 5.70 0.00 7.79 0.39

3 3 3.84 0.00 5.70 0.00 7.78 0.26
3 3 3 3.84 0.00 5.70 0.00 7.77 0.13

Bold values indicate the best results among the comparative methods.

TABLE 4 Ablation study of different components of our DT-DRL on CVRP.

Components of our DT-DRL CVRP20 CVRP50 CVRP100

Threshold unit Attentive context CE loss Obj Gap (%) Obj Gap (%) Obj Gap (%)

6.40 4.92 10.99 5.88 16.81 7.34
3 6.23 2.13 10.59 2.02 16.09 2.75

3 6.25 2.46 10.63 2.41 16.22 3.58
3 6.19 1.47 10.52 1.35 15.87 1.34

3 3 6.16 0.98 10.48 0.96 15.83 1.09
3 3 6.14 0.66 10.45 0.67 15.77 0.70

3 3 6.13 0.49 10.43 0.48 15.74 0.51
3 3 3 6.12 0.33 10.41 0.29 15.71 0.32

Bold values indicate the best results among the comparative methods.

Moreover, DT-DRL outstrips the elaborated DRL-based
methods, AM-sampling and POMO with augmentation,
by up to 0.69% and 0.25% in terms of the optimality
gap. Meanwhile, the computational time of our model for
inferring 10,000 test instances is decreased by at least an
order of magnitude.

4.3 Generalization analysis

In real-world scenarios, the number of nodes is changing
constantly. It is impractical to train a model that is suitable to
a specific case. Hence, the model should be robust enough to
changes in the number of tasks. Here we verify the generalization
ability of our proposed approach on two representative routing
problems, TSP and CVRP. Specifically, we train the DRL-based
model on TSP20 and test on 10,000 TSP20, TSP50, and TSP100
instances, respectively. Similarly, we also train the model on
CVRP20 and deploy it CVRP20, CVRP50, and CVRP100. The
average optimality gaps of our DT-DRL and other constructive
DRL methods are recorded in Figure 4.

It is clearly observed that the generalization results of our
DT-DRL are consistently better than those of DRL methods

regardless the number of nodes. Compared to AM and POMO,
our DT-DRL significantly reduces the optimality gap by 2.63%
and 1.75% on TSP50, and 6.96% and 4.77% on TSP100,
respectively. As for CVRP, the generalization advantage of our
algorithm becomes more significant. Our model achieves an
average gap of 0.33%, 4.34%, and 5.96% on instances with
20, 50, and 100 nodes, respectively, which outperforms the
state-of-the-art method POMO by up to 3.77%, 3.27%, and
3.13%.

4.4 Ablation study

4.4.1 Effect of each component
Our proposed DT-DRL has three creative components: 1)

the threshold unit; 2) attentive context; and 3) diverse-trajectory
driven CE loss for improving route planning performance.
Tables 3, 4 record the effect of gradually integrating these three
components on TSP and CVRP. For TSP100, it can be seen that
the optimality gap of the vanilla baseline with the addition of
threshold unit, attentive context, and CE loss alone, respectively,
is 1.03%, 1.16%, and 0.77%, which has a reduction of 0.90%,
0.77%, and 1.16% compared to the vanilla one. As for CVRP100,
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FIGURE 5
Comparison results of our proposed approach with different (1, 3, and 5) trajectories on (A) TSPs and (B) CVRPs.

TABLE 5 Routing performance of our approachwith different learning rate strategies and seeds for TSP and CVRP.

Settings η = 10−4 η = 10−3 × 0.96epoch

Seed = 1,234 Seed = 1,235 Seed = 1,234 Seed = 1,235

Problem Obj Gap Obj Gap Obj Gap Obj Gap

TSP20 3.84 0.00% 3.84 0.00% 3.84 0.00% 3.84 0.00%
TSP50 5.71 0.18% 5.71 0.18% 5.70 0.00% 5.70 0.00%
TSP100 7.79 0.39% 7.78 0.26% 7.78 0.26% 7.77 0.13%

CVRP20 6.12 0.33% 6.12 0.33% 6.12 0.33% 6.12 0.33%
CVRP50 10.53 0.57% 10.53 0.57% 10.52 0.48% 10.52 0.48%
CVRP100 16.17 1.25% 16.19 1.38% 16.16 1.19% 16.17 1.25%

Bold values indicate the best results among the comparative methods.

our approach with three components alone severally achieves
an optimality gap of 2.75%, 3.58%, and 1.34%, which boosts the
routing performance of the naïve approach by 4.59%, 3.76%, and
6.00%. In addition, the pair-wise combination of components
further improves the effectiveness of path planning. Overall, our
DT-DRL with three innovative components achieves the best
results on all problems.

4.4.2 Effect of the number of
trajectories/decoders

We propose a Diverse Trajectory-driven DRL method to
boost the routing performance significantly. The number of
trajectories generated by different decoders has a crucial impact
on the final results. Here we compare the objective values of DT-
DRL with 1, 3, and 5 trajectories on two representative VRPs,
TSP and CVRP.The results are shown in Figure 5. We can clearly
observe that the performance of path planning keeps getting
better as the number of trajectories/decoders increases. Take
CVRP as an example, our method with five diverse trajectories
achieves an reduction of 3.01%, 2.62%, and 2.60% in the value

of objective function on CVRP20, CVRP50, and CVRP100,
respectively. It also implies that the routing performance could
be improved slightly when the number of diverse trajectories is
further increased. Therefore, how to explore a more flexible way
to determine the number of trajectories is a difficult point for
future research.

4.4.3 Effect of hyperparameters
Following the current study Kool et al. (2018), we perform

sensitivity studies of combinations of different learning rates
and random seeds. The results in objective value as well as
optimality gap for all runs with seeds 1,234 and 1,235 and two
different learning rate strategies are listed in Table 5. It can be
observed that the results with different seeds are almost the same,
except for the large-scale scenes involvingTSP100 andCVRP100.
Furthermore, the different ways of learning rate variation have
little effect on the final routing performance, which also proves
the robustness of our algorithm. Take CVRP100 as an example,
the difference between the optimal gaps of DT-DRL with
different settings does not exceed 0.19%.
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5 Conclusion

In this paper, we concentrate on the large-scale power
inspection with UAVs, and formulate this challenging issue as
a family of VRPs when considering different constraints and
scenarios.We adopt a constructive routing strategy, which selects
the next node to visit and add it to the current, partial tour step-
by-step. We regard this constructive, sequential node-selection
process as a Markov decision process, and propose a novel
deep reinforcement learning approach for routing, which avoids
manually designed rules and does not require domain prior
knowledge.

We make three branches of modifications to enhance the
routing performance of our DRL approach. First, we introduce
a threshold unit in the encoder for more informative node
embeddings. Secondly,we design an attentive context embedding
which removes the irrelevant nodes to better reflect the
dynamics of state transitions. Finally, we bring in multiply
decoders with the same structure but independent parameters,
and devise a KL divergence based regular term to enforce
them to learn distinct routing patterns and generate diverse
trajectories.

We perform extensive experiments on five types of routing
problems: TSP, CVRP, OP, PCTSP, and SDVRP. The comparison
results illustrate that our proposed DT-DRL outstrips both
DRL and heuristic ones by a clear margin. Moreover, our
model generalizes well on larger scale problems compared
to state-of-the-art DRL methods. Last but nor least, the
ablation study demonstrates the effectiveness of our elaborated
modifications.

Pertaining to future works, we note that there is still a gap
between the effect of our DRL algorithm and that of the exact
algorithm. On the one hand, we realize that the first-time-
visitation may not be the best solution for the whole graph, and
try to develop different relational encoder-decoder frameworks
to improve the flexibility and accuracy of DRL models. On the
other hand, besides construction-type routing method, we can
also attempt an improvement-type method to boost the routing
performance, where the model optimizes the initial complete
solution iteratively with trial-and-error. In the near future, we
would like to apply our model to a broader range of smart
grids.
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