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Abstract 

 
Epilepsy is a neurological disorder affecting around 50 million individuals globally, with seizures posing 

significant detriments to their quality of life. Enhancing the accuracy of seizure detection and forecasting 

through technological means can lead to transformative improvements in patient management and outcomes. 

This survey offers a detailed examination of machine-learning techniques for automated seizure recognition 

and anticipation using electroencephalogram (EEG) data. This paper examine various approaches including 

traditional machine learning models, deep learning architectures like convolutional and recurrent neural 

networks, and hybrid methods. Key challenges include EEG signal complexity, inter-patient variability, and 
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limited labeled data. We analyze performance metrics, datasets, and clinical translation potential across 

studies. We confront key challenges such as the intricacy of EEG signals, the variability among patients, and 

the scarcity of annotated data. The survey evaluates performance indicators, available datasets, and the 

prospect of clinical implementation across diverse studies. Although deep learning approaches exhibit 

substantial potential, hurdles pertaining to adaptability and elucidation persist. Future directions, including the 

incorporation of multimodal data, the application of federated learning strategies, and the pursuit of 

explainable AI, are poised to propel the domain forward. This survey endeavors to reconcile technological 

advancements with clinical needs, offering a vital compendium for both researchers and healthcare 

practitioners focused on the cutting-edge of machine learning in epilepsy care.  

 

 

Keywords: Seizure detection; epilepsy; scalp electroencephalography; machine learning; deep learning; 

clinical translation; convolution neural networks. 

 

1 Introduction 
 

Seizures, particularly those related to epilepsy, are among the most common neurological diseases, affecting 

approximately 50 million people worldwide, according to the World Health Organization. Their unpredictable 

nature not only disturbs everyday living but also offers substantial health concerns, such as damage and, in 

severe cases, sudden unexpected death from epilepsy (SUDEP). We might greatly improve patient care by 

enhancing seizure detection and prediction accuracy, allowing for prompt interventions, personalized treatment 

methods, and potentially even seizure prevention [1,2]. 

 

EEG is the primary diagnostic tool for epilepsy, providing crucial insights into brainwave dynamics and 

electrical activity [3,4]. Electrodes are strategically placed on different areas of the scalp to capture EEG 

signals, as illustrated in Fig. 1. Various types of seizures exhibit distinct EEG patterns: 

 

1. Interictal Spikes: Brief bursts of high-frequency activity between seizures, signaling an increased risk of 

seizure onset. 

 

2. Ictal Activity: EEG patterns observed during a seizure, which vary depending on the type and location of 

the seizure. 

 

3. Slow Waves: Low-frequency waves that appear after a seizure, reflecting reduced brain activity. 

 

4. 4. High-Frequency Oscillations (HFOs): Rapid EEG oscillations often seen alongside interictal spikes, 

are associated with epileptic activity. 

 

 
 

Fig. 1. EEG recording system [5] 
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Particularly in the field of neurology, machine learning (ML) has emerged as a vital tool for improving 

predictive analytics and medical diagnostics in recent years. Traditional methods of seizure detection usually 

entail the manual examination of electroencephalograms (EEG) or video-EEG data by trained personnel. But in 

addition to being subjective and time-consuming, this approach lacks the scalability necessary for ongoing, real-

time monitoring. The emergence of machine learning methodologies has presented the prospect of automated, 

real-time seizure detection, along with the additional possibility of predictive abilities. This technological 

advance is opening the door for a paradigm change in seizure disorder management, moving from a more 

reactive to a more proactive approach. 

 

This survey aims to explore and evaluate the various machine-learning techniques employed for the detection 

and forecasting of epileptic seizures. We delve into how these techniques analyze complex datasets, typically 

derived from EEG, magnetoencephalography (MEG), or even wearable devices, to identify patterns indicative 

of pre-seizure states or seizure onset. 

 

1.1 Scope of the review 
 

Approaches for Seizure Identification: This section will examine a variety of seizure identification algorithms, 

from sophisticated deep learning techniques to conventional signal processing techniques combined with well-

known machine learning models like Random Forests and Support Vector Machines (SVM). Recurrent neural 

networks (RNNs) and convolutional neural networks (CNNs), which are especially useful for real-time seizure 

detection, will be covered in detail. 

 

• Predictive Models: Let's look into predictive models, which are intended to identify seizures in advance. 

In addition to discussing various feature extraction techniques and highlighting intriguing machine 

learning models for forecasting seizure likelihood, this section will tackle the difficulties in detecting the 

preictal state. In this new area of predictive neurology, we'll also look at the special difficulties and 

intriguing developments. 

 

• Data Sources and Preprocessing: A summary of the many forms of data that are utilized, along with 

feature engineering and preprocessing, which are essential to the effectiveness of machine learning 

models in seizure analysis. 

 

• Performance Measures: Sensitivity, specificity, false positive rates, and the more recent metrics 

designed for the unbalanced datasets typical of seizure data are discussed in the evaluation of these 

models. 

 

• Challenges and Future Directions: We will discuss the present constraints on machine learning (ML) 

applications for seizure detection and forecasting, including the necessity for individualized models as 

opposed to generalizable ones, interpretability issues with models, and the incorporation of multimodal 

data. We will also investigate new approaches to seizure pattern discovery, such as federated learning, 

transfer learning, and unsupervised learning. 

 

1.2 Research question 
 

How can machine learning techniques be effectively applied to improve the accuracy of seizure detection and 

forecasting in epileptic patients, and what are the implications for clinical practice and patient outcomes? 

 

1.3 Research gap 
 

Despite significant advancements in machine learning for seizure detection, there remains a gap in the 

comprehensive evaluation of these techniques, particularly in terms of their clinical translation and impact on 

patient care. Current research often focuses on technical achievements, such as improved accuracy in 

convolutional neural networks or novel feature extraction methods, without sufficient exploration of how these 

technologies can be integrated into clinical workflows and improve patient outcomes. Additionally, while 

studies have demonstrated high performance in controlled settings, there is limited research on the robustness 

and generalizability of these methods across diverse patient populations and real-world clinical environments. 
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1.4 Contributions 
 

1. Comprehensive Review: This survey provides a thorough analysis of the current state of machine 

learning techniques used for seizure detection and forecasting, covering both traditional and deep 

learning methods. 

2. Clinical Translation Insights: By examining the challenges and opportunities in translating these 

techniques into clinical practice, this survey offers insights into the practical implications of machine 

learning in epilepsy management. 

3. Future Directions: The survey identifies emerging trends and future research directions, such as the use 

of multimodal data and interpretability of models, which are crucial for advancing the field. 

4. Practical Guidance: By providing a detailed overview of data sources, preprocessing techniques, and 

performance measures, this survey serves as a practical guide for researchers and clinicians interested in 

implementing or evaluating machine learning tools for seizure detection. 

 

This survey aims to bridge the gap between technological advancements and clinical application, offering a 

comprehensive resource for understanding and advancing the use of machine learning in epilepsy care. 

 

1.5 Impact and applications 
 

The implications of accurate seizure detection and forecasting extend beyond clinical settings. They include the 

development of alert systems for patients, aiding in drug dosage adjustments, and even influencing the design of 

implantable devices for seizure control. This survey not only serves as a technical overview but also highlights 

the transformative potential of ML in enhancing the autonomy and safety of individuals with seizure disorders. 

 

By systematically analyzing the strengths and weaknesses of existing machine learning techniques, this survey 

aims to provide a foundation for researchers and practitioners to innovate further in this critical area of medical 

technology. Epilepsy is a persistent neurological illness that is characterized by the abrupt and unexplained 

onset of signs or symptoms that are brought on by aberrant electrical activity in the brain, these symptoms or 

signs might bring on seizures. 

 

Fig. 2. presents a comprehensive overview of the application of electroencephalogram (EEG) recordings in 

various clinical contexts for the detection, diagnosis, and monitoring of seizures and epilepsy [6]. 

 

 
 

Fig. 2. Applications, Challenges, and Recording Modalities for Automated Scalp EEG-Based Seizure 

Detection [6] 
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• Inward settings, EEG recordings are primarily used for the detection of seizures and the monitoring of 

patients with status epilepticus. The primary challenges in this context include ensuring patient 

generalizability, ease of use, and robustness to noise. Scalp EEG recordings, typically lasting from 

minutes to days, are the predominant modality used inwards. 

• In telemetry units, EEG recordings are employed for seizure detection, epilepsy diagnosis, and pre-

surgical planning. The key challenges in this setting are the robustness of EEG analysis to different 

seizure types and the spatial localization of seizure onset and spread. Both scalp and intracranial EEG 

recordings are utilized, often lasting for days. 

• In community settings, EEG recordings are primarily used for seizure detection, epilepsy diagnosis, and 

patient safety alarms. The challenges in this context include the need for simple hardware suitable for 

ambulatory patients and the lack of a clear clinical correlate for EEG findings. Scalp, intracranial, and 

sub-cutaneous EEG recordings are used, with durations ranging from days to months. 

 

2 Challenges in Automated Scalp EEG-Based Seizure Detection 
 

Automated scalp EEG-based seizure detection is an essential advancement in epilepsy care, providing 

continuous, real-time monitoring of brain activity. However, developing effective detection systems is fraught 

with challenges. These challenges arise from the inherent complexity of EEG data, the intricacies in defining 

seizures, and inconsistencies in data collection and labeling. EEG signals are highly variable, with non-

stationary characteristics, frequent noise and artifacts, and significant variability both within and between 

patients, making seizure identification difficult. Defining what constitutes a seizure—especially in cases of 

subclinical events or seizure-like mimics—further complicates detection. Additionally, variations in recording 

quality, the potential for labeling errors, limited dataset sizes, and ethical considerations around data privacy 

create additional obstacles. Overcoming these challenges is crucial to improving the accuracy and reliability of 

automated seizure detection systems, ultimately enhancing patient care. The challenges for automated seizure 

detection from scalp EEG can be summarized as follows [7,8]: 

 

Data complexity: 

 

• Non-Stationarity: EEG signals are inherently non-stationary, meaning their statistical properties can 

change over time. This variability makes it difficult to develop models that consistently identify seizure 

patterns, as the EEG data does not adhere to fixed distributions or characteristics. Non-stationarity can 

arise due to various factors such as changes in brain state, alertness, or external influences, complicating 

the task of detecting seizures with high accuracy. 

• Noise and Artifacts: EEG recordings are prone to contamination from various sources of noise and 

artifacts, which can mask or distort the signal of interest. Common sources of noise include muscle 

artifacts (e.g., from eye blinks or jaw movements), line noise from electrical interference, and motion 

artifacts. These contaminations can create false positives or obscure real seizure activity, posing a 

significant challenge for automated detection algorithms that must distinguish between true brain activity 

and extraneous noise. 

• Inter-patient Variability: EEG patterns differ significantly between individuals due to variations in 

brain anatomy, physiology, and seizure types. This inter-patient variability makes it difficult to develop 

seizure detection models that generalize well across different patients. A model trained on one patient’s 

data may not perform as effectively on another’s, necessitating the development of more robust, 

adaptable algorithms that can accommodate this diversity. 

• Intra-patient Variability: Even within the same patient, EEG patterns can change over time, influenced 

by factors such as medication, sleep, stress, or disease progression. These variations can lead to 

inconsistencies in seizure detection if the model is not designed to adapt to such changes. Intra-patient 

variability demands the development of dynamic models capable of adjusting to evolving EEG patterns 

without losing accuracy. 

 

Seizure definition: 

 

• Subclinical Seizures: Some seizures do not produce overt clinical symptoms, making them difficult to 

identify and label accurately. These subclinical seizures can be missed in manual reviews and pose a 

challenge for automated systems, which must detect subtle changes in EEG that may not correspond to 
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obvious clinical signs. Detecting subclinical seizures is crucial for comprehensive monitoring and 

management of epilepsy [9]. 

• Seizure Mimics: Non-epileptic events, such as psychogenic nonepileptic seizures (PNES), can produce 

EEG patterns that resemble epileptic seizures. These seizure mimics can lead to false positives in 

automated detection systems, complicating the differentiation between true epileptic events and other 

phenomena. Accurate classification models are required to distinguish between epileptic and non-

epileptic events to avoid misdiagnosis and inappropriate treatment [10]. 

• Continuous Seizures: Continuous or prolonged seizures, such as those seen in status epilepticus, present 

a unique challenge in distinguishing them from repeated discrete seizures. Automated systems must 

accurately identify the transition between seizure and non-seizure states to avoid misinterpreting a 

continuous event as multiple discrete seizures or vice versa. This requires sophisticated algorithms that 

can analyze the temporal dynamics of seizures with high precision [11]. 

 

Data collection and labeling discrepancies: 

 

• Variability in Recording Quality: The quality of EEG recordings can vary due to differences in 

equipment, electrode placement, and recording settings. Variations in these factors can introduce 

inconsistencies in the data, making it difficult to develop standardized detection algorithms. Poor 

recording quality can lead to missed seizures or false detections, underscoring the importance of high-

quality data collection protocols [12]. 

• Labeling Errors: Manual labeling of seizures in EEG data is a subjective process and prone to errors, 

particularly for subtle or atypical seizures. These errors can propagate through the training and validation 

of automated detection systems, reducing their accuracy and reliability. Ensuring accurate and consistent 

labeling is essential for the development of robust models [13]. 

• Limited Dataset Size: The availability of large, well-labeled EEG datasets is crucial for training 

effective seizure detection algorithms. However, such datasets are often limited in size, which can hinder 

the development and evaluation of models. Small datasets may not capture the full range of seizure 

variability, leading to overfitting and poor generalization to new patients or conditions [14]. 

• Data Privacy and Ethical Considerations: Collecting and sharing EEG data involve significant ethical 

and privacy concerns, particularly regarding patient confidentiality. The sensitive nature of medical data 

requires stringent protocols to ensure that data is handled appropriately, and patient consent is obtained 

[15].  

 

These considerations can limit the availability of data for research and development, posing a challenge for 

advancing automated seizure detection technologies. 

 

3 Domain-Specific Knowledge in EEG-Based Seizure Detection 
 

EEG recording techniques: EEG, or electroencephalography, measures brain activity by detecting voltage 

fluctuations generated by neuronal activity. There are two primary EEG recording methods: extracranial and 

intracranial. Extracranial EEG involves placing electrodes on the scalp, while intracranial EEG involves placing 

electrodes directly in the brain or under the skin. Intracranial methods, such as electrocorticography (ECoG) and 

stereotaxic EEG, offer superior signal quality because they record activity directly from brain regions of 

interest, leading to a higher signal-to-noise ratio and fewer artifacts [16]. However, these methods are invasive, 

carry significant medical risks, and are primarily used in epilepsy surgery planning. As a result, intracranial 

EEG data is rare and typically patient-specific, limiting its general use in seizure detection. 

 

Conversely, scalp EEG is the most common method for recording brain activity in seizure-related disorders. It 

typically involves about 20 electrodes placed on the scalp using the standardized 10-20 system. This system, 

however, has limitations, such as inadequate coverage of the lower brain regions, which can result in missed 

seizure activity. Scalp EEG primarily captures activity from cortical pyramidal neurons and offers a lower 

amplitude signal compared to intracranial recordings. Despite these limitations, scalp EEG is widely used due to 

its non-invasive nature and sufficient efficacy in clinical settings [17]. 

 

EEG frequency bands: EEG signals are categorized into frequency bands, each associated with different 

cognitive and physiological states. The five conventional frequency bands are shown in Table 1. 
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Table 1. Basic Brain Waves Characteristics [18] 
 

Freq.Band Details 

Frq. HZ Amp. mv states 

Gamma More than 30 5-10 Concentration 

Beta 15-30 2-20 Anxiety is prevalent, energetic, focused on others, and calm. 

Alpha 9-14 20-60 Very calm, unresponsive focus 

Theta 4-8 2-100 Internally concentrated and deeply relaxed 

Delta 1-3 20-200 Sleep 
 

Seizure manifestations in scalp EEG: Understanding the various manifestations of seizures in EEG is crucial 

for developing machine-learning algorithms for seizure detection. Seizures are characterized by abnormal, 

excessive electrical activity in the brain, and are classified as either focal (involving specific brain regions) or 

generalized (involving both hemispheres). Seizures can vary in duration, typically lasting from a few seconds to 

two minutes, but sometimes extending into a prolonged state known as status epilepticus, which requires 

immediate medical attention as shown in Fig. 3. 
 

 
 

Fig. 3. The 10-20 electrode placement system is based on front-back distances (from nasion to inion) of 

10% and 20%. Scalp EEG setups can vary in spatial resolution, using anywhere from 1 to 256 channels. 

Each electrode is identified by one or two letters, followed by a digit, indicating its location. The letters 

represent specific brain regions: Fp (frontal-polar), F (frontal), P (parietal), T (temporal), O (occipital), 

and C (central). Odd-numbered electrodes are positioned on the left side of the brain, even-numbered on 

the right, and Z electrodes are placed along the midline of the scalp [6] 
 

Seizures progress through four phases as shown in Fig. 4: 
 

1. Inter-ictal: The baseline period between seizures, which may contain inter-ictal epileptiform discharges 

(IEDs) in patients with epilepsy. 

2. Pre-ictal: The period immediately before a seizure, relevant for seizure prediction algorithms. 

3. Ictal: The active seizure period, characterized by specific EEG patterns depending on the affected brain 

region. 

4. Post-ictal: The recovery period after a seizure, often marked by distinct EEG abnormalities and patient 

confusion or drowsiness. 
 

The detection of seizures is complicated by the fact that not all abnormal EEG activity is epileptiform, and not 

all epileptiform activity indicates a seizure. 
 

Scalp EEG artifacts: Scalp EEG recordings are prone to various artifacts that can interfere with accurate 

seizure detection [6]. These include: 
 

• Electrical and Environmental Interference: External electrical sources can introduce noise into the EEG 

signal. 

• Ocular Artifacts: Eye movements and blinks can produce significant electrical potentials that 

contaminate the EEG. 
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• Muscle Artifacts: Movements such as jaw clenching or convulsions during seizures can introduce high-

amplitude, high-frequency noise. 

• Cardiac and Respiratory Artifacts: The heart's electrical activity and respiratory movements can also 

affect EEG recordings. 
 

 
 

Fig. 4. Main seizure types and some EEG characteristics. (Top) Normal brain activity, focal seizure, and 

focal onset seizure with secondary generalization alongside their EEG correlate. (Bottom) Nomencla- 

ture of seizure phases including demonstrative EEG segments of inter-ictal, pre-ictal, ictal and post-ictal 

activity [6] 
 

These artifacts can vary depending on the clinical setting and the patient's condition, and may even dominate the 

EEG signal during a seizure, potentially misleading detection algorithms. 
 

Understanding these aspects of EEG recording and seizure manifestation is essential for the development of 

robust and accurate seizure detection algorithms. 
 

4 Datasets 
 

Electroencephalography (EEG) datasets are indispensable resources in the study and diagnosis of neurological 

disorders, particularly epilepsy. These datasets provide critical information about brain activity, captured 

through electrodes placed on the scalp, allowing researchers and clinicians to analyze patterns associated with 

various brain states. With the growing interest in artificial intelligence and machine learning for medical 

applications, the availability of diverse and high-quality EEG datasets has become increasingly important. 
 

EEG datasets vary significantly in terms of patient demographics (such as age and species), the number of 

channels, sampling frequency, and the specific conditions recorded. Some datasets are publicly accessible, 

promoting open science and enabling widespread research collaboration. Others are private or require special 

access due to the sensitive nature of the data.  
 

Table 2 [19] provides a comprehensive overview of various EEG datasets, highlighting their availability, type, 

source, year of publication, size, number of channels, number of patients, sampling frequency, and the types of 

EEG segments included. This information is crucial for researchers selecting appropriate datasets for their 

studies, whether they are investigating seizure patterns, brainwave dynamics, or developing novel diagnostic 

tools.  
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Table 2. Overview of EEG Datasets [19] 

 
Ref. Availability Type Source Year Size No. of 

Channels 

No. of 

Patients 

Sampling 

Frequency 

EEG Segments 

[20] Freely available Adult e-repositori upf. 2001 3.05 MB 100 single 5 173.61 Hz Seizure states, healthy 

[21] Upon request Pediatric and 

adult 

– 2005 – – – – – 

[22] Freely available Pediatric PhysioNet repository 2010 42.6 GB 23–27 23 256 Hz Intractable seizures 

[23] Freely available Adult e-repository upf. 2012 814 MB 64 5 512 Hz Focal, Non-focal 

[24] Freely available Dog and human Kaggle 2014 105 GB – – – Different types 

[25] Free but requires 

login 

Adult Website 2015 572 GB 20–31 10,874 250, 256, 512 Hz Different types 

[26] Freely available Adult Researchgate 2016 604 KB 57 10 200 Hz Ictal, inter-ictal, pre-ictal EEGs 

[27] Freely available Paediatric 

(neonates) 

Zenedo 2018 4.3 GB 19 79 256 Hz Seizure onset 

[28] Requires 

registration 

Adult Website 2018 – 16 3 400 Hz Seizure episodes 

[29] Private Adult – 2019 – 19 115 128 Hz Epileptic and healthy 

[30] Private Adult – 2019 – – 50 250, 256 Hz Generalized and focal epilepsies 

[31] Private Adult – 2019 – 21 5 500 Hz Focal and tonic-clonic 

[32] Private Pediatric – 2019 – – 29 200, 500 Hz Typical absence seizures 

[33] Private Adult – 2019 – – 12 256 Hz Seizure events 

[34] Private – – 2019 – 21 25 200 Hz Seizure events 

[35] Private – – 2019 – 18 10 256 Hz Seizure states 

[36] Private – – 2019 – 22 22 250 Hz Ictal, non-ictal 

[37] Freely available Adult Zenedo 2020 20 MB – 15 173.61 Hz Inter-ictal 

[38] Private – – 2020 – 21 – 250 Hz Seizure onsets 

[39] Private Adult – 2020 – 21 150 256 Hz Seizure and normal 

[40] Freely available Adult PhysioNet repository 2020 20 GB 29 14 512 Hz Epileptic seizures (focal onset, tonic-

clonic) 

[41] Freely available – Figshare 2020 24.3 GB – 39 – Divided based on activity 

[42] Freely available Adult Mendeley repository 2021 3133 MB 21 6 500 Hz Complex partial, electrographic, and 

video-detected seizures 

[43] Freely available Pediatric and 

adult 

Open neuro 

repository 

2021 15 GB 52 30 2000 Hz HFO markings 

[44] Freely available Paediatric IEEE data port 2021 5.12 GB 23–96 24 256 Hz Ictal and pre-ictal EEGs 

[45] Private Paediatric – 2021 – 22 23 256 Hz Peri-ictal and non-seizure EEGs 
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5 A. Modern Techniques for Epileptic Diagnosis 
 

Advancements in technology have significantly transformed the landscape of epileptic diagnosis, particularly 

with the integration of Artificial Intelligence (AI) into healthcare systems. Among AI technologies, machine 

learning (ML) and deep learning (DL) have emerged as powerful tools for analyzing EEG data and diagnosing 

epilepsy. 

 

Machine learning vs. deep learning in epileptic diagnosis: ML and DL represent two distinct approaches to 

analyzing EEG data for epilepsy diagnosis. ML models typically involve a series of iterative processes, 

including feature selection, classification, and model evaluation. These models rely heavily on expert 

knowledge for selecting relevant features and tuning the parameters for classification. Despite their 

effectiveness, ML models often require extensive manual intervention and expertise. 

 

In contrast, DL models, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs), are designed to automatically learn features from raw data. However, they demand large datasets and 

substantial computational resources for effective training. DL models have shown great promise in capturing 

complex patterns in EEG data, often outperforming traditional ML methods when enough data is available. 

 

Stages of epileptic diagnosis using deep learning: The process of diagnosing epilepsy using deep learning 

involves several key stages, as illustrated in Fig. 5. Each stage is crucial for developing an accurate and reliable 

model that can assist in clinical decision-making. 

 

 
 

Fig. 5. Stages of epileptic diagnosis by deep learning 

 

Data preprocessing: 

 

- Noise Removal: The first step involves cleaning the EEG data to eliminate noise and artifacts, which 

could otherwise distort the analysis. 

 

- Signal Segmentation: EEG signals are then segmented into smaller epochs or windows, making it easier 

to analyze specific time intervals. 

 

- Data Conversion: The segmented signals are converted into numerical arrays or other formats suitable for 

input into deep learning models. 

 

Feature extraction: 

 

- Identifying Relevant Features: In this stage, features that are indicative of different types of epileptic 

activity are extracted. These may include spectral features (such as power in different frequency bands), 

statistical measures (like mean and variance), and time-domain features (such as amplitude and duration 

of spikes). 

   

Data augmentation (Optional): 

 

- Enhancing Data Diversity: When the original dataset is limited, data augmentation techniques like rotation, 

scaling, or adding noise can be applied. This step increases the diversity of training samples, which can improve 

the generalization of the model. 

 

Deep learning model development: Once the data is preprocessed and features are extracted, the focus shifts 

to developing and training the deep learning model. 
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Model Selection: 

 

- Choosing the Right Architecture: Selecting an appropriate deep learning architecture is crucial. This 

could involve experimenting with various architectures, such as CNNs for spatial patterns or RNNs for 

temporal sequences, to determine which is most effective for the specific EEG classification task. 

 

Model Training: 

 

- Training the Model: The selected model is trained using the preprocessed and augmented data. During 

training, appropriate loss functions and optimization techniques are employed to fine-tune the model's 

parameters. 

- Validation and Monitoring: The training process is closely monitored, with regular validation on a 

separate dataset to ensure that the model is not overfitting. This helps in achieving a model that 

generalizes well to unseen data. 

 

Evaluation: 

 

- Performance Assessment: After training, the model is evaluated on a separate test dataset to assess its 

performance metrics, including accuracy, sensitivity, specificity, and F1 score. These metrics provide 

insights into the model's effectiveness in diagnosing epilepsy. 

 

Deployment (Optional): 

 

- Clinical Integration: If the model demonstrates satisfactory performance, it can be deployed in clinical 

settings to assist healthcare professionals in diagnosing epilepsy. Deployment involves ensuring the 

model's robustness, reliability, and compliance with security and privacy regulations, especially when 

patient data is involved. 

 

6 Machine Learning Algorithms for Classification 
 

Research in this field has produced a variety of ML and deep learning models for EEG classification, each 

desiged with specific objectives, datasets, preprocessing techniques, and classification methods. Fig. 6 

represents a Standard pipeline for automated seizure detection using ML algorithms. 

 

 
 

Fig. 6. Standard pipeline for automated seizure detection using ML algorithms [6] 

 

After data pre-processing, feature extraction, and feature selection, the data is prepared for classification. It's 

important to note that deep learning (DL) models don't always require pre-extracted features as input. This 

section explores three common feature-based machine learning (ML) algorithms used for automated seizure 

detection, while the following section focuses on DL models. Table 3 summarize the feature-based ML models 

found in the literature. 
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Table 3. Feature-based ML methods from a systematic review of literature for seizure detection in scalp EEG data 

 
Classifier Feature(s) Dataset(s) Performance Validation Segment Year Reference 

LDAG-SVM Entropy, largest Lyapunov exponent, 

correlation dimension 

CHB-MIT, 

Bonn 

Accuracy: 95%, Sensitivity: 99%, 

Specificity: 96%, Run time: 98ms 

50-50 train-

test 

N/A 2019 [46] 

SVM DWT-based sigmoid entropy (time and 

frequency domain) 

CHB-MIT, 

Bonn, RMCH 

Sensitivity: 94.21% LOO 1s 2019 [47] 

SVM, ELM (SVM is 

best) 

Weighted FPE complexity-based feature 

(W-FPE-F) 

CHB-MIT (12 

patients), Bonn 

Accuracy: 98.99%, Specificity: 89.33%, 

Sensitivity: 94.17% 

10-fold CV 4s, 3s 

overlap 

2019 [48] 

k-NN The energy of signal after DCT CHB-MIT (21 

patients, 5 

electrodes) 

Accuracy: 93.64%, Sensitivity: 94.77%, 

Specificity: 92.21%, F-score: 93.12%, 

FPR: 0.07, FNR: 0.05 

10-fold CV 1s, no 

overlap 

2020 [49] 

 Hidden Markov 

Model  

 DMD power, sum of 2D PSD, variance, 

KFD features  

 CHB-MIT, 

AIIMS  

 Average CHB-MIT: Accuracy: 99.60%, 

MCC: 0.97, Kappa: 0.97, FPR: 0.12%, 

NPV: 99.69%, PPV: 98.73%, 

Sensitivity: 96.64%, Specificity: 99.88%  

 N/A   5s, no 

overlap  

 

2020  

 [50] 

 XGBoost   Mean, std, signal envelope, kurtosis, 

skewness, complexity, mobility, TKEO, 

fractal dimension, band power, sum of 

relative beta and gamma  

 TUSZ (4 

channels)  

 Sensitivity: 20%, FA/24h: 15.59   N/A   1s, 0.5 

overlap  

 

2020  

 [51] 

 LDA   Univariate features (kurtosis, mean 

absolute deviation, interquartile range, 

semivariance), bivariate features 

(correlogram)  

 CHB-MIT (14 

patients)  

 Sensitivity: 100%, Specificity: 99.8%, 

Accuracy: 99.6%  

 3-fold CV   1s, no 

overlap  

 

2020  

 [52] 

 k-NN   Discrete cosine transform energies   CHB-MIT (5 

channels)  

 Accuracy: 93.64%   N/A   3s 

overlap  

 

2020  

 [53] 

 k-NN   Dual-tree discrete wavelet transform 

features  

 CHB-MIT   Accuracy: 74.03%   N/A   3s 

overlap  

 

2020  

 [54]  

 RF   Hjorth parameters, time correlation 

coefficient matrix, eigenvalues of 

correlation, sub-band signal energy  

 CHB-MIT   Accuracy: 98.03%, Specificity: 99.04%, 

Sensitivity: 97.02%  

 Leave-5-

patient-out  

 4s, 2s 

overlap  

 

2020  

 [55] 

 Genetic Algorithm - 

Binary Grey Wolf 

Optimization  

 Std, Shannon entropy, kurtosis, Hjorth 

parameters, skewness, energy and 

nonlinear energy, Higuchi fractal 

dimension, Katz fractal dimension, spectral 

entropy  

 TUH   Accuracy: 85%   N/A   1.8s, no 

overlap  

 

2021  

 [56] 

 Multi-layer 

Perceptron  

 Riemannian tangent space map features   TUSZ (18 

channels)  

 Accuracy: 98.94%, Kappa: 0.916   6s, 3s 

overlap  

  

2021  

 [57] 

RF Mean value and peak-to-peak value of CHB-MIT, TPR: 99.42%, PPV: 99.71%, TNR: 80-20 train- 4s 2021 [58] 
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Classifier Feature(s) Dataset(s) Performance Validation Segment Year Reference 

wavelet energy (PDWC) NICU, 

Pone_pat, Bonn 

99.71%, NPV: 99.71%, Accuracy: 

99.67%, F1: 99.54% 

test 

LDA (classification), 

bagging 

Spectral edge frequencies, spectral edge 

powers, IQR, MAD, PCC 

CHB-MIT (18 

channels), 

AIIMS (private) 

Accuracy: 84.83%, FDR: 1.2/hour, 

Mean latency: 1.43s 

N/A 1s, no 

overlap 

2021 [59] 

 XGBoost   WAF-based hybrid extracted features, 

SSA, and time-domain features  

 CHB-MIT (18 

channels, 10 

patients)  

 Accuracy: 94.46%, Sensitivity: 88.61%, 

Specificity: 88.61%, Precision: 99.81%, 

MCC: 89.54%, Kappa: 89.03%  

 5-fold CV   6s, no 

overlap  

 

2022  

 [60] 

 SVM (Classification)   Covariance matrices of channels 

(Riemannian geometry)  

 CHB-MIT (22 

channels)  

 Accuracy: 99.87%, Sensitivity: 99.91%, 

Specificity: 99.82%  

 10-fold CV   2s, no 

overlap  

 

2022  

 [61]  

 Naive Bayes   Relative amplitude, spectral entropy, 

logarithmic band power, tonal power ratio, 

1D local binary pattern, PSD, spectrogram  

 CHB-MIT, 

TUEP  

 TUEP: Accuracy >90%, Sensitivity 

>85%, Specificity >85%, CHB-MIT: 

Accuracy 90%, Sensitivity >92%, 

Specificity >92%  

 90-10 train-

test  

 N/A   

2022  

 [62] 

 Naive Bayes   10 geometric features extracted in each 

frequency band (θ, β, δ, α)  

 CHB-MIT   Accuracy: 94.54%   10-fold CV   20s, 15s 

overlap  

 

2022  

 [63] 

 NN   AM bandwidth, FM bandwidth, 

frequency, kurtosis, Hjorth complexity, 

Hjorth mobility, skewness, spectral 

centroid, spectral entropy, spectral peak  

 Bonn, NSC-HK   Accuracy: 98.1%, Sensitivity: 98.21%, 

Specificity: 97.65%  

 70-30 train-

test  

 N/A   

2022  

 [64]  

Fuzzy k-NN GNMF decomposed SSTFT maps CHB-MIT, 

Bonn 

Accuracy: 98.99%, Sensitivity: 99.27%, 

Specificity: 98.53% 

10-fold CV 1s, no 

overlap 

2023 [65] 

k-NN (feature 

selection), RF 

Weighted degree, clustering coefficient CHB-MIT, 

Siena scalp 

CHB-MIT: F1: 86.69%, AUC: 84.33%, 

Accuracy: 84.83%, Precision: 85.60%, 

Sensitivity: 87.81%, Specificity: 81.01% 

5-fold CV 4s 2023 [66] 

SVM Kurtosis, skewness, line length, quartile 

values, correlation coefficient matrix (PCA 

dimensionality reduction) 

CHB-MIT, 

Siena 

Accuracy: 96.67%, Specificity: 95.62%, 

Sensitivity: 97.72% 

Bootstrap 1s, 0.5s 

overlap 

2023 [67] 

RF Power of 6 PSD brain wave bands, vs 

coherence coefficient 

TUEP (8 

channels) 

Coherence coefficients: Accuracy: 

90.87%, PSD: Accuracy: 95.73% 

70-30 train-

test 

10s, no 

overlap 

2023 [68] 

RF Hjorth parameter, time correlation 

coefficient matrix, eigenvalues, sub-band 

signal energy, fuzzy entropy 

CHB-MIT Accuracy: 98.03%, Specificity: 99.04%, 

Sensitivity: 97.02% 

Leave-5-

patient-out 

4s, 2s 

overlap 

2023 [69] 
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The analysis of various classifiers used for seizure detection across different datasets reveals a range of 

performance metrics and methodologies. 

 

➢ K-Nearest Neighbors (k-NN) is employed with discrete cosine transform energies and dual-tree discrete 

wavelet transform features on CHB-MIT data. The accuracy varies significantly: 93.64% with discrete 

cosine transform features but drops to 74.03% with wavelet transform features. Both approaches use a 3-

second segment length with overlap, indicating that feature choice can significantly influence the 

classifier's performance. 

 

➢ Support Vector Machine (SVM), using covariance matrices of channels processed through Riemannian 

geometry, achieves an impressive accuracy of 99.87%, with high sensitivity (99.91%) and specificity 

(99.82%). This classifier benefits from a 2-second segment length without overlap, highlighting the 

effectiveness of using geometric features in high-dimensional space. 

 

➢ Random Forest (RF), leveraging multiple features such as Hjorth parameters and sub-band signal energy, 

shows strong performance with an accuracy of 98.03% and a high specificity of 99.04%. Validation is 

performed using a leave-5-patient-out method with 4-second segments and 2-second overlap, which 

provides robust results across diverse patient data. 

 

➢ Linear Discriminant Analysis (LDA) achieves perfect sensitivity (100%) and high specificity (99.8%) 

with univariate and bivariate features. This classifier is validated with 3-fold cross-validation and 1-

second segments without overlap, suggesting its efficiency in distinguishing seizure events when using 

well-selected features. 

 

➢ XGBoost demonstrates varied results. With hybrid features and SSA, it reaches an accuracy of 94.46%, 

but it drops to a sensitivity of only 20% with different feature sets on the TUSZ dataset. This classifier 

uses a 6-second segment length without overlap for one set of features and a 1-second segment with 0.5-

second overlap for another, illustrating the impact of feature selection and segment length on 

performance. 

 

➢ Naive Bayes shows high accuracy (up to 94.54%) and good sensitivity (>85%) with different feature sets 

across CHB-MIT and TUEP datasets. The 10-fold cross-validation and longer segments (20 seconds with 

15-second overlap) used in some studies suggest a balance between accuracy and practical classification 

needs. 

 

➢ Genetic Algorithm - Binary Grey Wolf Optimization provides an accuracy of 85% with a diverse set of 

features, using a 1.8-second segment length without overlap. This method demonstrates that optimization 

algorithms can be effective in feature selection, though its accuracy is slightly lower compared to other 

methods. 

 

➢ Hidden Markov Model achieves high accuracy (99.60%) and excellent performance metrics such as 

MCC and Kappa. It uses a 5-second segment without overlap and a range of features, including 2D 

power spectra and variance. This suggests that Hidden Markov Models can effectively model complex 

temporal dynamics in seizure data. 

 

➢ Neural Networks (NN), utilizing a variety of features, including bandwidths and spectral properties, 

achieve high accuracy (98.1%) on the Bonn and NSC-HK datasets. This method uses a 70-30 train-test 

split, demonstrating its robustness in handling various feature sets. 

 

➢ Multi-layer Perceptron (MLP), with Riemannian tangent space map features, achieves an accuracy of 

98.94% on the TUSZ dataset with a 6-second segment and 3-second overlap. This highlights the 

classifier's ability to capture complex feature interactions effectively. 

 

Overall, the choice of classifier, feature set, and validation method significantly impacts performance. 

While methods like SVM and RF show high accuracy and sensitivity, classifiers such as k-NN and 

XGBoost demonstrate the importance of feature selection and segment length in achieving optimal 

results. 
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Table 4. DL methods from systematic review of literature for seizure detection in scalp EEG data 

 

Classifier Dataset(s) Performance Validation Segment Length Year References 

Hybrid Probabilistic 

Graphical Model CNN 

(PGM-CNN) 

CHB-MIT, Johns 

Hopkins Hospital 

(JHH) 

TPR: 0.61, FPR: 0.0067, AUC: 0.8, F1: 

0.67, Precision: 0.83 

5-fold CV 1s 2019 [70] 

CNN NYP-WC, CHB-MIT - 5-fold CV 120s, 119s overlap 2019 [71] 

ANN CHB-MIT - - 100s, no overlap 2019 [72] 

Attention-based CNN-

BiRNN 

CHB-MIT No missing channels: Specificity: 93.94%, 

Sensitivity: 92.88% 

2 missing channels: Specificity: 90%, 

Sensitivity: 95% 

10-fold CV 23s 2019 [73] 

CNN + MIDS, CNN + Data 

Augmentation 

CHB-MIT CNN+MIDS: Sensitivity: 74.08%, 

Specificity: 92.46% 

CNN+Data Augmentation: Sensitivity: 

72.11%, Specificity: 95.89% 

LOO 5s 2019 [74] 

CNN CHB-MIT Sensitivity: 97.25%, Specificity: 97.25%, 

Accuracy: 97.25% 

10-fold CV 3s 2020 [75] 

CNN CHB-MIT Accuracy: 96.74%, Specificity: 100%, 

Sensitivity: 82.35% 

5-fold CV 100s 2020 [76] 

GCN CHB-MIT Accuracy: 98.35% 10-fold CV 60s 2020 [77] 

U-net (Feature Extraction), 

LSTM (Classification) 

TUSZ (16 channels) Sensitivity: 12.37%, FA/24hr: 1.44, TAES 

score: 2.46 

10-fold CV 20s 2020 [78] 

AttVGGNet-RC CHB-MIT (23 

channels, remove 

patient 12) 

Sensitivity: 93.84% ± 0.63%, Specificity: 

95.84% ± 0.74%, Accuracy: 95.12% ± 

0.20% 

10-fold CV 1s 2020 [79] 

CNN (Feature Extraction), 

LSTM (Classification) 

TUSZ Accuracy: 82%, Precision: 71.69%, 

Sensitivity: 85% 

LOO N/A 2020 [80] 

RNN CHB-MIT, TUEP TUEP: Accuracy: 84.7%, Sensitivity: 89.2%, 

Specificity: 82.2% 

CHB-MIT: Accuracy: 85.3%, Sensitivity: 

93.0%, Specificity: 79.7% 

90-10 train-

test 

N/A 2021 [81] 

CNN CHB-MIT Accuracy: 87.4%, Sensitivity: 88.10%, 

Specificity: 87.10%, F1: 87.40%, Precision: 

86.98% 

10-fold CV 8s 2021 [82] 
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Classifier Dataset(s) Performance Validation Segment Length Year References 

2D-DCAE (Feature 

Extraction), Bi-LSTM 

(Classification) 

CHB-MIT (16 

patients) 

Accuracy: 98.79% ± 0.53%, Sensitivity: 

98.72% ± 0.77%, Specificity: 98.86% ± 

0.53%, Precision: 98.86% ± 0.53%, F1: 

98.79% ± 0.53% 

10-fold CV 4s 2021 [83] 

CNN CHB-MIT, Bonn Accuracy: 98.80%, Sensitivity: 98%, 

Specificity: 98% 

10-fold CV N/A 2021 [84] 

CNNs, FC Layer CHB-MIT (remove 

patient 12, 21 

channels), TUSZ (28 

patients) 

CHB-MIT: Accuracy: 96.17%, Sensitivity: 

56.83%, Specificity: 96.97%, F1: 38.26% 

TUSZ: Accuracy: 67.68%, Sensitivity: 

59.21%, Specificity: 75.30%, F1: 47.55% 

5-fold CV 4s, 1s overlap 2021 [85] 

CNN Aided Factor Graph CHB-MIT AUC-ROC: 90.23%, AUC-PR: 76.77%, F1: 

90.42% 

6-fold, leave 4 

patients out 

4s 2021 [86] 

2D-PCANet (Feature 

Extraction), SVM 

(Classification) 

CHB-MIT, Bonn Accuracy: 98.47%, Sensitivity: 98.28%, 

Specificity: 98.50% 

10-fold CV 1s 2021 [87] 

GBDT, Attention-based 

CNN-BiRNN, FC Layer for 

Classification 

CHB-MIT Accuracy: 97.56%, Sensitivity: 90.97%, 

Specificity: 91.93% 

Train-val-test 

(70-15-15) 

20s 2021 [88] 

ResNest18 TUSZ (20 channels) Sensitivity: 42.05%, FAR/day: 5.78 CV 250 samples 2021 [89] 

Multilayer Deep 

Convolutional Neural 

Network (MDCNN) 

CHB-MIT (18 

subjects, 23 

channels) 

Accuracy: 71.60% LOO 1s, 0.5s overlap 2021 [90] 

Asymmetrical Back 

Propagation Neural Network 

(ABPN) 

CHB-MIT Sensitivity: 96.32%, Specificity: 95.12%, 

Accuracy: 98.36% 

- - 2021 [91] 

AE (Feature Extraction), RF 

(Classification) 

Siena F1 (ictal): 91%, F1 (non-ictal): 90.1% Leave-2-out 6s, 1s overlap 2021 [92] 

Deep Stacked AE CHB-MIT, TUEP TUEP: Accuracy: 91.5%, Sensitivity: 85.2%, 

Specificity: 86.0% 

CHB-MIT: Accuracy: 91.4%, Sensitivity: 

85.5%, Specificity: 85.3% 

90-10 train-

test 

N/A 2021 [93] 

CNN Aided Factor Graph CHB-MIT AUC-ROC: 83.8%, AUC-PR: 50.38%, F1: 

93.42% 

6-fold, leave 4 

patients out 

4s, 32s 2022 [94] 

CNN-SVM CHB-MIT Accuracy: 98.31% Train-test-val N/A 2022 [95] 
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Classifier Dataset(s) Performance Validation Segment Length Year References 

(70/15/15) 

CNN, LSTM CHB-MIT (22 

patients, 8 channels) 

Accuracy: 94.6%, Recall: 97.15%, Precision: 

95.78% 

10-fold CV N/A 2022 [96] 

1D CNN CHB-MIT (21 

channels) 

Accuracy: 97.09%, Sensitivity: 96.49%, 

Specificity: 97.09% 

10-fold CV 2s, 1s overlap 2022 [97] 

ResNet-based TUSZ (20 channels) Accuracy: 69% (segment level), Accuracy: 

61.67% 

3-fold CV 1s, 0.75s overlap 2022 [98] 

Medium Weight Deep CNN CHB-MIT Accuracy: 96% 10-fold CV 300ms, 20ms 

overlap 

2022 [99] 

CNN vs Xception CHB-MIT CNN: Accuracy: 98.47%, Precision: 

99.79%, Recall: 98.93%, F1: 98.51% 

Xception: Accuracy: 95.52%, Precision: 

99.93%, Recall: 98.63%, F1: 97.05% 

CV N/A 2022 [100] 

Multi-fuse Reduced Deep 

CNN (MF-RDCNN) 

Bonn, CHB-MIT, 

Neurology Sleep 

Centre Delhi 

CHB-MIT: Accuracy: 99.29%, Sensitivity: 

99.29%, Specificity: 99.86%, FPR: 0.71% 

Train-test-val 

(40-40-20) 

N/A 2022 [101] 

ConvLSTM TUEP Accuracy: 92.17%, Sensitivity: 93.27%, 

Specificity: 90.96%, Precision: 91.23%, F1: 

0.93 

5-fold CV, 

LOO 

3s 2022 [102] 

Convolution Attention 

Layer, BiRNN Classification 

CHB-MIT (Patients 

1-11, 14, 20-24) 

Accuracy: 97.62%, Sensitivity: 96.69%, 

Specificity: 98.41%, F1: 97.38% 

N/A 1s 2022 [103] 

AE (Feature Extraction), RF 

(Classification) 

Siena Accuracy: 97.22% LOO 6s, 1s overlap 2022 [104] 

CNN (Feature Extraction), 

ANN, LR, RF, SVM, GB, k-

NN, SGD, Ensembles 

(Classification) 

CHB-MIT, Bonn ANN: 94.4%, LR: 91.7%, RF: 92.4%, SVM: 

95.7%, GB: 94.6%, k-NN: 96.8%, SGD: 

87%, Ensembles: 97% 

10-fold CV 5s, no overlap 2022 [105] 

BERT (LLM) TUSZ Accuracy: ~77% - 1s 2022 [106] 

CNViT (Convolutional 

Vision Transformer) 

CHB-MIT Sensitivity: 96.71%, Specificity: 97.23%, 

Accuracy: 97.15%, AUC: 99.54% 

- 2s 2022 [107] 

Graph Isomorphism 

Network (GIN) 

CHB-MIT Accuracy: 96.2%, Sensitivity: 95.4%, 

Specificity: 97.0% 

10-fold CV 20s 2022 [108] 

Graph-Generative Neural 

Network (GGN) 

TUH Accuracy: 91% Train-test (70-

30) 

5s 2022 [109] 
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Classifier Dataset(s) Performance Validation Segment Length Year References 

GAT and BiLSTM CHB-MIT, TUH CHB-MIT: Accuracy: 98.52%, Specificity: 

94.34%, Sensitivity: 97.75% 

TUH: Accuracy: 98.02%, Specificity: 

99.06%, Sensitivity: 97.7% 

5-fold CV 1s, 0.5s overlap 2022 [110] 

Deep Convolutional 

Autoencoder Bi-LSTM 

CHB-MIT Sensitivity: 99.7%, Accuracy: 99.8%, 

Specificity: 99.9%, Precision: 99.9%, F1: 

99.6% 

10-fold CV 4s 2023 [111] 

CNN CHB-MIT, Bonn Accuracy: 96.69%, Sensitivity: 96.19%, 

Specificity: 97.08% 

k-fold CV 2s 2023 [112] 

CNN and RNN CHB-MIT, Bonn, 

Bern-Barcelona 

Accuracy: 96.23% 8-fold CV N/A 2023 [113] 

CNNs with an Attention 

Mechanism 

TUH Accuracy: 86%, F1: 81% LOO 3s, no overlap 2023 [114] 

CNN and CBAM (Feature 

Extraction), GRU 

(Classification) 

CHB-MIT (13 

patients) 

Accuracy: 91.73%, Sensitivity: 88.09%, 

FPR: 0.053/h, Specificity: 92.09%, AUC: 

91.56% 

10-fold CV 30s, 1s overlap 2023 [115] 

CNN CHB-MIT (8 

channels, 16 

patients) 

Accuracy: 97.57%, Sensitivity: 98.90%, 

FPR: 2.13%, Delay: 10.46s 

LOO 5s, 1s overlap 2023 [116] 

Scalp Swarm Algorithm 

(SSA) (Feature Selection), 

LSTM (Classification) 

TUSZ Sensitivity: 98.99%, FDR: 98.43%, 

Specificity: 99.01%, Accuracy: 99.2%, F1: 

97.54% 

80-20 train-

test 

1s 2024 [117] 
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7 Deep Learning Algorithms for Classification 
 

While feature-based ML requires pre-defined features, DL can automatically identify patterns and features from 

various data types. DL algorithms can use raw or filtered EEG data, domain representations, or a set of 

extracted EEG features as input. Common DL architectures for automated seizure detection include artificial 

neural networks (ANN), convolutional neural networks (CNN), and graph machine learning (GML). Different 

architectures classify EEG segments based on specific signal properties. This section reviews these DL 

methods. Notably, some studies combine different DL architectures (in parallel or series) to leverage their 

strengths and address weaknesses. Table 4 summarize the encountered DL models. 

 

➢ Convolutional Neural Networks (CNNs) are widely used for seizure detection, with many studies 

reporting high accuracy on the CHB-MIT dataset. Performance metrics like sensitivity and specificity are 

often in the 90-98% range. Segment lengths vary but are commonly 1-5 seconds. 10-fold cross-validation 

is frequently used for validation. 

 

➢ Some studies combine CNNs with other techniques like RNNs, LSTMs, or attention mechanisms. These 

hybrid approaches also tend to achieve strong results, with accuracies over 95% in many cases. The 

CHB-MIT dataset remains very popular, but some work uses other datasets like TUSZ or Bonn. 

 

➢ Graph-based approaches like Graph Convolutional Networks (GCNs) and Graph Attention Networks 

(GATs) have shown promise, with accuracies over 96% reported on CHB-MIT data. Transformer-based 

models like BERT and CNViT have also been applied successfully. 

 

➢ Autoencoders are sometimes used for feature extraction before classification. Random Forests are a 

common choice for the classification stage when using autoencoders. This approach has achieved over 

97% accuracy on the Siena dataset. 

 

Overall, deep learning approaches dominate recent seizure detection research. While CNNs remain very 

popular, there is increasing diversity in model architectures as researchers explore graph-based, 

transformer-based, and hybrid approaches. Performance continues to improve, with many studies now 

reporting accuracies well over 95% on standard datasets. 

 

8 Discussion and Future Work 
 

This comprehensive survey has highlighted the significant progress made in applying machine learning 

techniques to seizure detection and forecasting. Several key themes have emerged: 

 

1. Deep Learning Dominance: Convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) have demonstrated superior performance compared to traditional machine learning methods on 

various benchmark datasets. Their ability to automatically learn relevant features from raw EEG data is 

particularly valuable, given the complexity of seizure patterns. 

2. Challenges with Generalizability: While many studies report high accuracy on specific datasets, 

developing models that generalize well across different patients and recording conditions remains a 

significant challenge. Inter-patient and intra-patient variability in EEG signals continues to hinder 

broader clinical applicability. 

3. Data Limitations: The limited availability of large, high-quality, labeled EEG datasets is a constraint for 

the field. Many studies rely on relatively small patient cohorts, which limits the robustness and 

generalizability of the developed models. The inclusion of diverse datasets, covering various 

demographics and seizure types, will be key to improving model performance. 

4. Clinical Translation Gap: Despite promising research results, a significant gap remains in translating 

these technologies into clinical practice. Issues such as interpretability, real-time performance, and 

integration with existing clinical workflows need to be addressed for successful adoption. Furthermore, 

regulatory and safety concerns must be prioritized to ensure the safe deployment of these systems in 

clinical environments. 

5. Multimodal Approaches: Recent progress has been made by combining EEG data with other modalities 

such as clinical information, imaging data, or signals from wearable devices. This multimodal approach 
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offers the potential to improve system performance and create more comprehensive diagnostic tools, 

which may lead to personalized treatment plans. 

6. Emerging Architectures: While CNNs and RNNs currently dominate the field, newer architectures like 

graph neural networks (GNNs) and transformer models are showing promise in capturing the complex 

spatio-temporal dynamics of seizures. These models may provide more accurate and interpretable 

predictions by leveraging the inherent structure of EEG signals and seizure patterns. 

7. Ethical Implications: The ethical concerns surrounding the deployment of machine learning systems in 

epilepsy management warrant careful consideration. Issues such as data privacy, informed consent, 

algorithmic bias, and equitable access to these technologies are critical. Machine learning models, 

particularly those relying on patient data, must ensure robust data anonymization techniques and secure 

handling of sensitive information. Furthermore, algorithms need to be developed and validated across 

diverse populations to avoid exacerbating healthcare disparities. As these technologies become integrated 

into clinical workflows, the responsibility for decision-making between clinicians and machine learning 

systems must be clearly defined, ensuring that these tools enhance, rather than replace, human expertise. 

 

Based on the current state of the field and identified challenges, several key areas for future research 

emerge: 

 

➢ Larger, more diverse datasets: There is a critical need for larger, multi-center EEG datasets that capture a 

wider range of patient demographics, seizure types, and recording conditions. Efforts to standardize data 

collection and annotation protocols across institutions would be valuable. 

➢ Personalized models: Given the high variability between patients, developing approaches for efficiently 

adapting or fine-tuning models to individual patients could significantly improve real-world 

performance. This may involve techniques like transfer learning or few-shot learning. 

➢ Interpretable AI: As these systems move closer to clinical deployment, there is a growing need for 

interpretable or explainable AI techniques that can provide clinicians with insight into how decisions are 

being made. This is crucial for building trust and enabling effective human-AI collaboration. 

➢ Real-time, low-power implementations: For practical use in wearable devices or implantable systems, 

there is a need to develop models that can operate in real time with low computational and power 

requirements. This may involve techniques like model compression or neuromorphic computing. 

➢ Multimodal integration: Further research into effectively combining EEG data with other modalities 

(e.g., clinical data, neuroimaging, wearable sensors) could lead to more robust and accurate seizure 

detection and forecasting systems. 

➢ Longitudinal studies: Most current research focuses on short-term seizure detection or prediction. 

Longer-term studies examining how these models perform over extended periods and how they might 

adapt to changes in a patient's condition over time are needed. 

➢ Standardized evaluation: Developing standardized benchmarks and evaluation protocols would enable 

more direct comparisons between different approaches and accelerate progress in the field. 

➢ Federated learning: Given privacy concerns around medical data, exploring federated learning 

approaches that allow models to be trained across multiple institutions without sharing raw patient data 

could be valuable. 

➢ Causal inference: Moving beyond pure prediction, developing models that can provide insights into the 

causal mechanisms underlying seizures could have significant implications for treatment. 

 

9 Conclusion 
 

This comprehensive survey has examined the current state-of-the-art in machine-learning techniques for 

automated seizure detection and forecasting from EEG data. We have explored a wide range of approaches, 

from traditional machine learning models to advanced deep learning architectures and hybrid methods. It 

highlights the role of deep learning networks, machine learning, and artificial intelligence in advancing the 

medical field. Several key themes and findings have emerged from this review. Deep learning approaches, 

particularly convolutional and recurrent neural networks, have shown great promise in improving the accuracy 

and robustness of seizure detection compared to traditional machine learning methods. The ability of deep 

networks to automatically learn relevant features from raw EEG data has been particularly advantageous. 

However, challenges remain in terms of model interpretability and generalizability across patients and recording 

conditions. There is a clear trend towards multimodal approaches that combine EEG with other data sources 

like ECG, accelerometry, and video. These multimodal systems aim to provide a more comprehensive view of 
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seizure activity and reduce false positives. However, integrating heterogeneous data streams remains technically 

challenging. While seizure detection has seen significant advances, accurate seizure forecasting remains an 

elusive goal. The inherent difficulty in identifying reliable pre-ictal biomarkers and the need for personalized 

models present ongoing challenges. Emerging techniques like transfer learning and online adaptive algorithms 

show promise in this area but require further investigation. A key gap identified in this survey is the limited 

clinical translation of many of the proposed techniques. Most studies focus on retrospective analysis of pre-

recorded datasets rather than prospective, real-time implementation. More research is needed on practical 

considerations like computational efficiency, integration with clinical workflows, and long-term performance in 

real-world settings. 

 

Looking to the future, several promising directions emerge: 

 

1. Explainable AI techniques to improve the interpretability of complex deep learning models and build 

trust with clinicians. 

2. Federated learning approaches to leverage data from multiple institutions while preserving patient 

privacy. 

3. Unsupervised and self-supervised learning methods to extract insights from large unlabeled EEG 

datasets. 

4. Closed-loop systems that combine seizure detection/forecasting with automated treatment delivery. 

5. Wearable and minimally invasive EEG technologies to enable long-term ambulatory monitoring. 
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