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Abstract

In this paper we view the first order set theory ZFC under the canonical first order semantics
and the second order set theory ZFC2 under the Henkin semantics.
Main results are: (i) Let MZFC

st be a standard model of ZFC, then ¬Con(ZFC + ∃MZFC
st ).

(ii) Let MZFC2
st be a standard model of ZFC2 with Henkin semantics, then ¬Con(ZFC2 +

∃MZFC2
st ).

(iii) Let k be inaccessible cardinal then ¬Con(ZFC + ∃κ).
In order to obtain the statements (i) and (ii) examples of the inconsistent countable set in a set
theory ZFC + ∃MZFC

st and in a set theory ZFC2 + ∃MZFC2
st were derived.

It is widely believed that ZFC + ∃MZFC
st and ZFC2 + ∃MZFC2

st are inconsistent, i.e. ZFC and
ZFC2 have a standard models. Unfortunately this belief is wrong.

Keywords: Gödel encoding; Russell’s paradox; standard model; Henkin semantics; inaccessible
cardinal.
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1 Introduction

1.1 Main results

Let us remind that accordingly to naive set theory, any definable collection is a set. Let R be the
set of all sets that are not members of themselves. If R qualifies as a member of itself, it would
contradict its own definition as a set containing all sets that are not members of themselves. On the
other hand, if such a set is not a member of itself, it would qualify as a member of itself by the same
definition. This contradiction is the Russell’s paradox. In 1908, two ways of avoiding the paradox
were proposed, the Russell’s type theory and the Zermelo set theory, the first constructed axiomatic
set theory. Zermelo’s axioms went well beyond Frege’s axioms of extensionality and unlimited set
abstraction, and evolved into the now-canonical Zermelo–Fraenkel set theory ZFC. ”But how do
we know that ZFC is a consistent theory, free of contradictions? The short answer is that we
don’t; it is a matter of faith (or of skepticism)”— E. Nelson wrote in his paper [1]. However, it is
deemed unlikely that even ZFC2 which is significantly stronger than ZFC harbors an unsuspected
contradiction; it is widely believed that if ZFC and ZFC2 were inconsistent, that fact would have
been uncovered by now. This much is certain —ZFC and ZFC2 is immune to the classic paradoxes
of naive set theory: the Russell’s paradox, the Burali-Forti paradox, and Cantor’s paradox.

Remark 1.1.1. Note that in this paper we view

(i) the first order set theory ZFC under the canonical first order semantics,

(ii) the second order set theory ZFC2 under the Henkin semantics [2], [3], [4], [5], [6].

Remark 1.1.2. Second-order logic essantially differs from the usual first-order predicate calculus in
that it has variables and quantifiers not only for individuals but also for subsets of the universe and
variables for n-ary relations as well [2], [6]. The deductive calculus DED2 of second order logic is
based on rules and axioms which guarantee that the quantifiers range at least over definable subsets
[6]. As to the semantics, there are two tipes of models: (i) Suppose U is an ordinary first-order
structure and S is a set of subsets of the domain A of U. The main idea is that the set-variables
range over S, i.e.

⟨U,S⟩ |= ∃XΦ(X) ⇐⇒ ∃S (S ∈ S) [⟨U,S⟩ |= Φ(S)] .

We call ⟨U,S⟩ the Henkin model, if ⟨U,S⟩ satisfies the axioms of DED2 and truth in ⟨U,S⟩ is
preserved by the rules of DED2. We call this semantics of second-order logic the Henkin semantics
and second-order logic with the Henkin semantics the Henkin second-order logic. There is a special
class of Henkin models, namely those ⟨U,S⟩ where S is the set of all subsets of A.

We call these full models. We call this semantics of second-order logic the full semantics and second-
order logic with the full semantics the full second-order logic.

Remark 1.1.3. We emphasize that the following facts are the main features of second-order logic:

1.The Completeness Theorem: A sentence is provable in DED2 if and only if it holds in all
Henkin models [2], [6].

2.The Löwenheim-Skolem Theorem: A sentence with an infinite Henkin model has a countable
Henkin model.

3.The Compactness Theorem: A set of sentences, every finite subset of which has a Henkin
model, has itself a Henkin model.

4. The Incompleteness Theorem: Neither DED2 nor any other effectively given deductive
calculus is complete for full models, that is, there are always sentences which are true in all full
models but which are unprovable.

2



Foukzon and Men’kova; JAMCS, 26(2): 1-20, 2018; Article no.JAMCS.38773

5. Failure of the Compactness Theorem for full models.

6. Failure of the Löwenheim-Skolem Theorem for full models.

7. There is a finite second-order axiom system Z2 such that the semiring N of natural numbers is
the only full model (up to isomorphism) of Z2.

8. There is a finite second-order axiom system RCF2 such that the field R of real numbers is the
only (up to isomorphism) full model of RCF2.

Remark 1.1.4. For let second-order ZFC be, as usual, the theory that results obtained from ZFC
when the axiom schema of replacement is replaced by its second-order universal closure, i.e.

∀X [Func (X) =⇒ ∀u∃ν∀r [r ∈ ν ⇐⇒ ∃s (s ∈ u ∧ (s, r) ∈ X)]] , (1.1.1)

where X is a second-order variable, and where Func (X) abbreviates ” X is a functional relation”,
see [7].

Designation 1.1.1. We will denote

(i) by ZFCHs
2 set theory ZFC2 with the Henkin semantics,

(ii) by ZFC
Hs
2 set theory ZFCHs

2 + ∃MZFCHs
2

st , and

(iii) by ZFCst set theory ZFC + ∃MZFC
st , where MTh

st is a standard model of the theory Th.

Axiom ∃MZFC . [8]. There is a set MZFC and a binary relation ϵ ⊆ MZFC ×MZFC which makes
MZFC a model for ZFC.

Remark 1.1.5. (i) We emphasize that it is well known that axiom ∃MZFC a single statement
in ZFC see [8], Ch.II, section 7. We denote this statement throught all this paper by symbol
Con

(
ZFC;MZFC

)
. The completness theorem says that ∃MZFC ⇐⇒ Con (ZFC) .

(ii) Obviously there exists a single statement in ZFCHs
2 such that ∃MZFCHs

2 ⇐⇒ Con
(
ZFCHs

2

)
.

We denote this statement throught all this paper by symbol Con
(
ZFCHs

2 ;MZFCHs
2

)
and there

exists a single statement ∃MZHs
2 in ZHs

2 . We denote this statement throught all this paper by

symbol Con
(
ZHs

2 ;MZHs
2

)
.

Axiom ∃MZFC
st . [[8]]. There is a set MZFC

st such that if R is{
⟨x, y⟩ |x ∈ y ∧ x ∈ MZFC

st ∧ y ∈ MZFC
st

}
,

then MZFC
st is a model for ZFC under the relation R.

Definition 1.1.1. [8].The model MZFC
st and M

ZHs
2

st is called a standard model since the relation ∈
used is merely the standard ∈- relation.

Remark 1.1.6. [8]. Note that axiom ∃MZFC doesn’t imply axiom ∃MZFC
st .

Remark 1.1.7. Note that in order to deduce:

(i) ˜Con(ZFCHs
2 ) from Con(ZFCHs

2 ), and

(ii) ˜Con(ZFC) from Con(ZFC), by using Gödel encoding, one needs something more than the

consistency of ZFCHs
2 , e.g., that ZFCHs

2 has an omega-model M
ZFCHs

2
ω or an standard model

M
ZFCHs

2
st i.e., a model in which the integers are the standard integers. To put it another way,

why should we believe a statement just because there’s a ZFCHs
2 -proof of it? It’s clear that if

ZFCHs
2 is inconsistent, then we won’t believe ZFCHs

2 -proofs. What’s slightly more subtle is

3
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that the mere consistency of ZFC2 isn’t quite enough to get us to believe arithmetical theorems
of ZFCHs

2 ; we must also believe that these arithmetical theorems are asserting something about
the standard naturals. It is ”conceivable” that ZFCHs

2 might be consistent but that the only

nonstandard models M
ZFCHs

2
Nst it has are those in which the integers are nonstandard, in which case

we might not ”believe” an arithmetical statement such as ”ZFCHs
2 is inconsistent” even if there is

a ZFCHs
2 -proof of it.

2 Derivation of the Inconsistent Definable Set in Set
Theory ZFC

Hs
2 and in Set Theory ZFCst

2.1 Derivation of the inconsistent definable set in set theory ZFC
Hs

2

We assume now that Con
(
ZHs

2 ;M
ZHs

2
st

)
.

Designation 2.1.1. Let ΓHs
X be the collection of the all 1-place open wff of the set theory ZFC

Hs
2 .

Definition 2.1.1. Let Ψ1 (X) ,Ψ2 (X) be 1-place open wff’s of the set theory ZFC
Hs
2 .

(i) We define now the equivalence relation (· ∼X ·) ⊂ ΓHs
X × ΓHs

X by

Psi1 (X) ∼ Ψ2 (X) ⇐⇒ ∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)] (2.1.1)

(ii) A subset ΛHs
X of ΓHs

X such that Ψ1 (X) ∼ Ψ2 (X) holds for all Ψ1 (X) and Ψ2 (X) in ΛHs
X , and

never for Ψ1 (X) in ΛHs
X and Ψ2 (X) outside ΛHs

X , is called an equivalence class of ΓHs
X .

(iii) The collection of all possible equivalence classes of ΓHs
X by ˜X , denoted ΓHs

X / ∼X

ΓHs
X / ∼X,

{
[Ψ (X)]Hs |Ψ(X) ∈ ΓHs

X

}
. (2.1.2)

(iv) For any Ψ (X) ∈ ΓHs
X let

[Ψ (X)]Hs ,
{
Φ(X) ∈ ΓHs

X |Ψ(X) ∼ Φ(X)
}

denotes the equivalence class to which Ψ (X) belongs. All elements of ΓHs
X equivalent to each other

are also elements of the same equivalence class.

Definition 2.1.2. [9]. Let Th be any theory in the recursive language LTh ⊃ LPA, where LPA is a
language of Peano arithmetic.

We say that a number-theoretic relation R (x1, ..., xn) of n arguments is expressible in Th if and

only if there is a wff R̂ (x1, ..., xn) of Th with the free variables x1, ..., xn such that, for any natural
numbers k1, ..., kn, the following hold:

(i) If R (k1, ..., kn) is true, then ⊢Th R̂
(
k1, ..., kn

)
;

(ii) If R (k1, ..., kn) is false, then ⊢Th ¬R̂
(
k1, ..., kn

)
.

Designation 2.1.2. (i) Let gZFCHs
2

(u) be a Gödel number of given an expression u of the set

theory ZFC
Hs
2 , ZFCHs

2 + ∃MZFCHs
2

st .

(ii) Let FrHs
2 (y, v) be the relation : y is the Gödel number of a wff of the set theory ZFC

Hs
2 that

contains free occurrences of the variable X with Gödel number v [9].

(iii) Note that the relation FrHs
2 (y, v) is expressible in ZFC

Hs
2 by a wff F̂rHs

2 (y, v)

4
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(iv) Note that for any y, v ∈ N by definition of the relation FrHs
2 (y, v) follows that

F̂r
Hs

2 (y, v) ⇐⇒ ∃!Ψ (X)
[(

g
ZFC

Hs
2

(Ψ (X)) = y
)
∧
(
g
ZFC

Hs
2

(X) = ν
)]

, (2.1.3)

where Ψ (X) is a unique wff of ZFC
Hs
2 which contains free occurrences of the variable X with

Gödel number v. We denote a unique wff Ψ (X) defined by using equivalence (1.2.3) by symbol
Ψy,ν (X) , i.e.

F̂r
Hs

2 (y, v) ⇐⇒ ∃!Ψy,ν (X)
[(

g
ZFC

Hs
2

(Ψy,ν (X)) = y
)
∧
(
g
ZFC

Hs
2

(X) = ν
)]

, (2.1.4)

(v) Let ℘Hs
2 (y, v, ν1) be a Gödel number of the following wff: ∃!X [Ψ (X) ∧ Y = X] , where

g
ZFC

Hs
2

(Ψ (X)) = y, g
ZFC

Hs
2

(X) = ν, g
ZFC

Hs
2

(Y ) = ν1.

Definition 2.1.3. Let ΓHs
X be the countable collection of the all 1-place open wff’s of the set

theoryZFC
Hs
2 that contains free occurrences of the variable X.

Definition 2.1.4. Let g
ZFC

Hs
2

(X) = ν.

Let ΓHs
ν be a set of the all Gödel numbers of the 1-place open wff’s of the set theoryZFC

Hs
2 that

contains free occurrences of the variable X with Gödel number v, i.e.

ΓHs
ν =

{
y ∈ N| ⟨y, ν⟩ ∈ FrHs

2 (y, v)
}

(2.1.5)

or in the following equivalent form:

∀y (y ∈ N)
[
y ∈ Γν ⇐⇒ (y ∈ N) ∧ F̂r

Hs

2 (y, v)
]
. (2.1.6)

Remark 2.1.1. Note that from the axiom of separation it follows directly that ΓHs
ν is a set in the

sense of the set theory ZFC
Hs
2 .

Definition 2.1.5. (i) We define now the equivalence relation

(· ∼ν ·) ⊂ ΓHs
ν × ΓHs

ν (2.1.7)

in the sense of the set theory ZFC
Hs
2 by

y1 ∼ν y2 ⇐⇒ (∀X [Ψy1,ν (X) ⇐⇒ Ψy2,ν (X)]) . (2.1.8)

Note that from the axiom of separation it follows directly that the equivalence relation (· ∼ν ·) is a
relation in the sense of the set theory ZFC

Hs
2 .

(ii) A subset ΛHs
ν of ΓHs

ν such that y1 ∼ν y2 holds for all y1 and y1 in ΛHs
ν ,and never for y1 in ΛHs

ν

and y2 outside ΛHs
ν , is an equivalence class of ΓHs

ν .

(iii) For any y ∈ ΓHs
ν let [y]Hs ,

{
z ∈ ΓHs

ν |y ∼ν z
}
denote the equivalence class to which y belongs.

All elements of ΓHs
ν equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of ΓHs
ν by ˜ν , denoted ΓHs

ν / ∼ν

ΓHs
ν / ∼ν,

{
[y]Hs |y ∈ ΓHs

ν

}
. (2.1.9)

Remark 2.1.2. Note that from the axiom of separation it follows directly that ΓHs
ν / ∼ν is a set in

the sense of the set theory ZFC
Hs
2 .

Definition 2.1.6. Let ℑHs
2 be the countable collection of the all sets definable by 1-place open wff

of the set theory ZFC
Hs
2 , i.e.

5
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∀Y
{
Y ∈ ℑHs

2 ⇐⇒ ∃Ψ(X)
[(
[Ψ (X)]Hs ∈ ΓHs

X / ∼X

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (2.1.10)

Definition 2.1.7. We rewrite now (2.1.10) in the following equivalent form

∀Y
{
Y ∈ ℑHs

2 ⇐⇒ ∃Ψ(X)
[(
[Ψ (X)]Hs ∈ Γ∗Hs

X / ∼X

)
∧ (Y = X)

]}
, (2.1.11)

where the countable collection Γ∗Hs
X / ∼X is defined by

∀Ψ(X)
{
[Ψ (X)] ∈ Γ∗Hs

X / ∼X ⇐⇒
[(
[Ψ (X)] ∈ ΓHs

X / ∼X

)
∧ ∃!XΨ(X)

]}
(2.1.12)

Definition 2.1.8. Let ℜHs
2 be the countable collection of the all sets such that

∀X
(
X ∈ ℑHs

2

) [
X ∈ ℜHs

2 ⇐⇒ X /∈ X
]
. (2.1.13)

Remark 2.1.3. Note that ℜHs
2 ∈ ℑHs

2 since ℜHs
2 is a collection definable by 1-place open wff is

definable by formula

Ψ
(
Z,ℑHs

2

)
, ∀X

(
X ∈ ℑHs

2

)
[X ∈ Z ⇐⇒ X /∈ X] .

From (2.1.13) one obtains

ℜHs
2 ∈ ℜHs

2 ⇐⇒ ℜHs
2 /∈ ℜHs

2 . (2.1.14)

But (2.1.14) gives a contradiction(
ℜHs

2 ∈ ℜHs
2

)
∧
(
ℜHs

2 /∈ ℜHs
2

)
. (2.1.15)

However contradiction (2.1.15) it is not a contradiction inside ZFC
Hs
2 for the reason that the

countable collection ℑHs
2 is not a set in the sense of the set theory ZFC

Hs
2 .

In order to obtain a contradiction inside ZFC
Hs
2 we introduce the following definitions.

Definition 2.1.9.We define now the countable set Γ∗Hs
ν / ∼ν by

∀y
{
[y]Hs ∈ Γ∗Hs

ν / ∼ν ⇐⇒
(
[y]Hs ∈ ΓHs

ν / ∼ν

)
∧ F̂r

Hs

2 (y, v) ∧ [∃!XΨy,ν (X)]
}
. (2.1.16)

Remark 2.1.4. Note that from the axiom of separation it follows directly that Γ∗
ν/ is a set in the

sense of the set theory ZFC
Hs
2 .

Definition 2.1.10. We define now the countable set ℑ∗Hs
2 by formula

∀Y
{
Y ∈ ℑ∗Hs

2 ⇐⇒ ∃y
[(
[y] ∈ Γ∗Hs

ν / ∼ν

)
∧
(
g
ZFC

Hs
2

(X) = ν
)
∧ Y = X

]}
. (2.1.17)

Note that from the axiom schema of replacement (1.1.1) it follows directly that ℑ∗Hs
2 is a set in the

sense of the set theory ZFC
Hs
2 .

Definition 2.1.11. We define now the countable set ℜ∗Hs
2 by formula

∀X
(
X ∈ ℑ∗Hs

2

) [
X ∈ ℜ∗Hs

2 ⇐⇒ X /∈ X
]
. (2.1.18)

Note that from the axiom schema of separation it follows directly that ℜ∗Hs
2 is a set in the sense of

the set theory ZFC
Hs
2 .

Remark 2.1.5. Note that ℜ∗Hs
2 ∈ ℑ∗Hs

2 since ℜ∗Hs
2 is definable by the following formula

Ψ∗ (Z) , ∀X
(
X ∈ ℑ∗Hs

2

)
[X ∈ Z ⇐⇒ X /∈ X] . (2.1.19)

Theorem 2.1.1. Set theory ZFC
Hs
2 is inconsistent.

Proof. From (2.1.18) and Remark 2.1.5 we obtain ℜ∗Hs
2 ∈ ℜ∗Hs

2 ⇐⇒ ℜ∗Hs
2 /∈ ℜ∗Hs

2 from which

6
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immediately one obtains a contradiction(
ℜ∗Hs

2 ∈ ℜ∗Hs
2

)
∧
(
ℜ∗Hs

2 /∈ ℜ∗Hs
2

)
. (2.1.20)

2.2 Derivation of the inconsistent definable set in set theory ZFCst

Designation 2.2.1. (i) Let gZFCst (u) be a Gödel number of given an expression u of the set
theory ZFCst , ZFC + ∃MZFC

st .

(ii) Let Frst(y, v) be the relation : y is the Gödel number of a wff of the set theoryZFCst that
contains free occurrences of the variable X with Gödel number v [9].

(iii) Note that the relation Frst(y, v) is expressible in ZFCst by a wff F̂rst(y, v).

(iv) Note that for any y, v ∈ N by definition of the relation Frst(y, v) follows that

F̂rst(y, v) ⇐⇒ ∃!Ψ (X) [(gZFCst (Ψ (X)) = y) ∧ (gZFCst (X) = ν)] , (2.2.1)

where Ψ (X) is a unique wff of ZFCst which contains free occurrences of the variable X with Gödel
number v. We denote a unique wff Ψ (X) defined by using equivalence (2.2.1) by symbol Ψy,ν (X) ,
i.e.

F̂rst(y, v) ⇐⇒ ∃!Ψy,ν (X) [(gZFCst (Ψy,ν (X)) = y) ∧ (gZFCst (X) = ν)] , (2.2.2)

(v) Let ℘st (y, v, ν1) be a Gödel number of the following wff: ∃!X [Ψ (X) ∧ Y = X] , where

gZFCst (Ψ (X)) = y, gZFCst (X) = ν, gZFCst (Y ) = ν1

(2.6) in section 2, see Remark 2.2 and Designation 2.3, (see also [8]-[9]).

Definition 2.2.1. Let Γst
X be the countable collection of the all 1-place open wff’s of the set theory

ZFCst that contains free occurrences of the variable X.

Definition 2.2.2. Let gZFCst (X) = ν. Let Γst
ν be a set of the all Gödel numbers of the 1-place

open wff’s of the set theory ZFCst that contains free occurrences of the variable X with Gödel
number v, i.e.

Γst
ν = {y ∈ N| ⟨y, ν⟩ ∈ Frst(y, v)} , (2.2.3)

or in the following equivalent form:

∀y (y ∈ N)
[
y ∈ Γst

ν ⇐⇒ (y ∈ N) ∧ F̂rst(y, v)
]
.

Remark 2.2.1. Note that from the axiom of separation it follows directly that Γst
ν is a set in the

sense of the set theory ZFCst.

Definition 2.2.3. (i) We define now the equivalence relation (· ∼X ·) ⊂ Γst
X × Γst

X by

Ψ1 (X) ∼X Ψ2 (X) ⇐⇒ (∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)]) (2.2.4)

(ii) A subcollection Λst
X of Γst

X such that Ψ1 (X) ∼X Ψ2 (X) holds for all Ψ1 (X) and Ψ2 (X) in Λst
X ,

and never for Ψ1 (X) in Λst
X and Ψ2 (X) outside Λst

X , is an equivalence class of Γst
X .

(iii) For any Ψ (X) ∈ Γst
X let [Ψ (X)]st ,

{
Φ(X) ∈ Γst

X |Ψ(X) ∼X Φ(X)
}

denote the equivalence
class to which Ψ (X) belongs. All elements of Γst

X equivalent to each other are also elements of the
same equivalence class.

(iv) The collection of all possible equivalence classes of Γst
X by ˜X , denoted Γst

X/ ∼X

Γst
X/ ∼X,

{
[Ψ (X)]st |Ψ(X) ∈ Γst

X

}
. (2.2.5)

7
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Definition 2.2.4. (i) We define now the equivalence relation (· ∼ν ·) ⊂ Γst
ν × Γst

ν in the sense of
the set theory ZFCst by

y1 ∼ν y2 ⇐⇒ (∀X [Ψy1,ν (X) ⇐⇒ Ψy2,ν (X)]) (2.2.6)

Note that from the axiom of separation it follows directly that the equivalence relation (· ∼ν ·) is a
relation in the sense of the set theory ZFCst.

(ii) A subset Λst
ν of Γst

ν such that y1 ∼ν y2 holds for all y1 and y1 in Λst
ν ,and never for y1 in Λst

ν

and y2 outside Λst
ν , is an equivalence class of Γst

ν .

(iii) For any y ∈ Γst
ν let [y]st ,

{
z ∈ Γst

ν |y ∼ν z
}
denote the equivalence class to which y belongs.

All elements of Γst
ν equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of Γst
ν by ˜ν , denoted Γst

ν / ∼ν

Γst
ν / ∼ν,

{
[y]st |y ∈ Γst

ν

}
. (2.2.7)

Remark 2.2.2. Note that from the axiom of separation it follows directly that Γst
ν / ∼ν is a set in

the sense of the set theory ZFCst.

Definition 2.2.5. Let ℑst be the countable collection of all sets definable by 1-place open wff of
the set theory ZFCst, i.e.

∀Y
{
Y ∈ ℑst ⇐⇒ ∃Ψ(X)

[(
[Ψ (X)]st ∈ Γst

X/ ∼X

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (2.2.8)

Definition 2.2.6. We rewrite now (2.2.8) in the following equivalent form

∀Y
{
Y ∈ ℑst ⇐⇒ ∃Ψ(X)

[(
[Ψ (X)]st ∈ Γ∗st

X / ∼X

)
∧ (Y = X)

]}
, (2.2.9)

where the countable collection Γ∗st
X / ∼X is defined by

∀Ψ(X)
{
[Ψ (X)]st ∈ Γ∗st

X / ∼X ⇐⇒
[(
[Ψ (X)]st ∈ Γst

X

/
∼X

)
∧ ∃!XΨ(X)

]}
(2.2.10)

Definition 2.2.7. Let ℜst be the countable collection of the all sets such that

∀X (X ∈ ℑst) [X ∈ ℜst ⇐⇒ X /∈ X] . (2.2.11)

Remark 2.2.3. Note that ℜst ∈ ℑst since ℜst is a collection definable by 1-place open wff is
definable by formula

Ψ (Z,ℑst) , ∀X (X ∈ ℑst) [X ∈ Z ⇐⇒ X /∈ X] .

From (2.2.11) and Remark 2.2.3 one obtains directly

ℜst ∈ ℜst ⇐⇒ ℜst /∈ ℜst. (2.2.12)

But (2.2.12) immediately gives a contradiction

(ℜst ∈ ℜst) ∧ (ℜst /∈ ℜst) . (2.2.13)

However contradiction (2.2.13) it is not a true contradiction inside ZFCst for the reason that the
countable collection ℑst is not a set in the sense of the set theory ZFCst.

In order to obtain a true contradiction inside ZFCst we introduce the following definitions.

Definition 2.2.8. We define now the countable set Γ∗st
ν / ∼ν by formula

∀y
{
[y]st ∈ Γ∗st

ν / ∼ν ⇐⇒
(
[y]st ∈ Γst

ν / ∼ν

)
∧ F̂rst(y, v) ∧ [∃!XΨy,ν (X)]

}
. (2.2.14)

Remark 2.2.4. Note that from the axiom of separation it follows directly that Γ∗st
ν / ∼ν is a set in

the sense of the set theory ZFCst.
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Definition 2.2.9. We define now the countable set ℑ∗
st by formula

∀Y
{
Y ∈ ℑ∗

st ⇐⇒ ∃y
[(
[y]st ∈ Γ∗st

ν / ∼ν

)
∧ (gZFCst (X) = ν) ∧ Y = X

]}
. (2.2.15)

Note that from the axiom schema of replacement it follows directly that ℑ∗
st is a set in the sense of

the set theory ZFCst.

Definition 2.2.10. We define now the countable set ℜ∗
st by formula

∀X (X ∈ ℑ∗
st) [X ∈ ℜ∗

st ⇐⇒ X /∈ X] . (2.2.16)

Note that from the axiom schema of separation it follows directly that ℜ∗
st is a set in the sense of

the set theory ZFCst.

Remark 2.2.5. Note that ℜ∗
st ∈ ℑ∗

st since ℜ∗
st is definable by the following formula

Ψ∗ (Z) , ∀X (X ∈ ℑ∗
st) [X ∈ Z ⇐⇒ X /∈ X] . (2.2.17)

Theorem 2.2.1. [10]. Set theory ZFCst is inconsistent.

Proof. From (2.2.17) and Remark 2.2.5 we obtain ℜ∗
st ∈ ℜ∗

st ⇐⇒ ℜ∗
st /∈ ℜ∗

st from which
immediately one obtains a contradiction

(ℜ∗
st ∈ ℜ∗

st) ∧ (ℜ∗
st /∈ ℜ∗

st) . (2.2.18)

Remark 2.2.6.Theorem 2.2.1 originally was proved in papers [10], [11], [12] by using another
essentially complicated approach.

2.3 Derivation of the inconsistent definable set in ZFCNst

Definition 2.3.1. Let PA be a first order theory which contain usual postulates of Peano arithmetic
[9] and recursive defining equations for every primitive recursive function as desired. So for any
(n+1)-place function f defined by primitive recursion over any n-place base function g and (n+2)-
place iteration function h there would be the defining equations:

(i) f (0, y1, ..., yn) = g (y1, ..., yn) ,

(ii) f (x+ 1, y1, ..., yn) = h (x, f (x, y1, ..., yn) , y1, ..., yn) .

Designation 2.3.1. (i) Let MZFC
Nst be a nonstandard model of ZFC and let MPA

st be a standard

model of PA. We assume now that MPA
st ⊂ MZFC

Nst and denote such nonstandard model of the set
theory ZFC by MZFC

Nst

[
PA

]
.

(ii) Let ZFCNst be the theory

ZFCNst = ZFC +MZFC
Nst

[
PA

]
.

Designation 2.3.2. (i) Let gZFCNst (u) be a Gödel number of given an expression u of the set
theory ZFCNst , ZFC + ∃MZFC

Nst

[
PA

]
.

(ii) Let FrNst(y, v) be the relation : y is the Gödel number of a wff of the set theory ZFCNst that
contains free occurrences of the variable X with Gödel number v [9].

(iii) Note that the relation FrNst(y, v) is expressible in ZFCNst by a wff F̂rNst(y, v).

(iv) Note that for any y, v ∈ N by definition of the relation FrNst(y, v) follows that

F̂rNst(y, v) ⇐⇒ ∃!Ψ (X) [(gZFCNst (Ψ (X)) = y) ∧ (gZFCNst (X) = ν)] , (2.3.1)

where Ψ (X) is a unique wff of ZFCst which contains free occurrences of the variable X with Gödel
number v. We denote a unique wff Ψ (X) defined by using equivalence (2.3.1) by symbol Ψy,ν (X) ,

9
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i.e.

F̂rNst(y, v) ⇐⇒ ∃!Ψy,ν (X) [(gZFCNst (Ψy,ν (X)) = y) ∧ (gZFCNst (X) = ν)] . (2.3.2)

(v) Let ℘Nst (y, v, ν1) be a Gödel number of the following wff: ∃!X [Ψ (X) ∧ Y = X] , where

gZFCNst (Ψ (X)) = y, gZFCNst (X) = ν, gZFCNst (Y ) = ν1.

Definition 2.3.2. Let ΓNst
X be the countable collection of the all 1-place open wff’s of the set

theory ZFCNst that contains free occurrences of the variable X.

Definition 2.3.3. Let gZFCNst (X) = ν.Let ΓNst
ν be a set of the all Gödel numbers of the 1-place

open wff’s of the set theory ZFCNst that contains free occurrences of the variable X with Gödel
number v, i.e.

ΓNst
ν = {y ∈ N| ⟨y, ν⟩ ∈ FrNst(y, v)} , (2.3.3)

or in the following equivalent form

∀y (y ∈ N)
[
y ∈ ΓNst

ν ⇐⇒ (y ∈ N) ∧ F̂rNst(y, v)
]
.

Remark 2.3.1. Note that from the axiom of separation it follows directly that Γst
ν is a set in the

sense of the set theory ZFCNst.

Definition 2.3.4. (i) We define now the equivalence relation (· ∼X ·) ⊂ ΓNst
X × ΓNst

X by

Ψ1 (X) ∼X Ψ2 (X) ⇐⇒ (∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)]) (2.3.4)

(ii) A subcollection Λst
X of Γst

X such that Ψ1 (X) ∼X Ψ2 (X) holds for all Ψ1 (X) and Ψ2 (X) in
Λst

X , and never for Ψ1 (X) in ΛNst
X and Ψ2 (X) outside ΛNst

X , is an equivalence class of ΓNst
X .

(iii) For any Ψ (X) ∈ ΓNst
X let

[Ψ (X)]Nst ,
{
Φ(X) ∈ ΓNst

X |Ψ(X) ∼X Φ(X)
}

denote the equivalence class to which Ψ (X) belongs. All elements of Γst
X equivalent to each other

are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of ΓNst
X by ˜X , denoted ΓNst

X / ∼X

ΓNst
X / ∼X,

{
[Ψ (X)]Nst |Ψ(X) ∈ ΓNst

X

}
. (2.3.5)

Definition 2.3.5. (i) We define now the equivalence relation (· ∼ν ·) ⊂ ΓNst
ν × ΓNst

ν in the sense
of the set theory ZFCNst by

y1 ∼ν y2 ⇐⇒ (∀X [Ψy1,ν (X) ⇐⇒ Ψy2,ν (X)]) (2.3.6)

Note that from the axiom of separation it follows directly that the equivalence relation (· ∼ν ·) is a
relation in the sense of the set theory ZFCNst.

(ii) A subset ΛNst
ν of ΓNst

ν such that y1 ∼ν y2 holds for all y1 and y1 in ΛNst
ν , and never for y1 in

ΛNst
ν and y2 outside ΛNst

ν , is an equivalence class of ΓNst
ν .

(iii) For any y ∈ ΓNst
ν let [y]Nst ,

{
z ∈ ΓNst

ν |y ∼ν z
}

denote the equivalence class to which y

belongs. All elements of ΓNst
ν equivalent to each other are also elements of the same equivalence

class.

(iv) The collection of all possible equivalence classes of ΓNst
ν by ˜ν , denoted ΓNst

ν / ∼ν

10
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ΓNst
ν / ∼ν,

{
[y]Nst |y ∈ ΓNst

ν

}
. (2.3.7)

Remark 2.3.2. Note that from the axiom of separation it follows directly that ΓNst
ν / ∼ν is a set

in the sense of the set theory ZFCNst.

Definition 2.3.6. Let ℑNst be the countable collection of the all sets definable by 1-place open
wff of the set theory ZFCNst, i.e.

∀Y
{
Y ∈ ℑNst ⇐⇒ ∃Ψ(X)

[(
[Ψ (X)]Nst ∈ ΓNst

X / ∼X

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (2.3.8)

Definition 2.3.7. We rewrite now (2.3.8) in the following equivalent form

∀Y
{
Y ∈ ℑNst ⇐⇒ ∃Ψ(X)

[(
[Ψ (X)]Nst ∈ Γ∗Nst

X / ∼X

)
∧ (Y = X)

]}
, (2.3.9)

where the countable collection Γ∗Nst
X / ∼X is defined by formula

∀Ψ(X)
{
[Ψ (X)]Nst ∈ Γ∗Nst

X / ∼X ⇐⇒
[(
[Ψ (X)]Nst ∈ ΓNst

X / ∼X

)
∧ ∃!XΨ(X)

]}
. (2.3.10)

Definition 2.3.8. Let ℜNst be the countable collection of the all sets such that

∀X (X ∈ ℑNst) [X ∈ ℜNst ⇐⇒ X /∈ X] . (2.3.11)

Remark 2.3.3. Note that ℜNst ∈ ℑNst since ℜNst is a collection definable by 1-place open wff is
definable by formula

Ψ (Z,ℑNst) , ∀X (X ∈ ℑNst) [X ∈ Z ⇐⇒ X /∈ X] .

From (2.3.11) one obtains

ℜNst ∈ ℜNst ⇐⇒ ℜNst /∈ ℜNst. (2.3.12)

But (2.3.12) gives a contradiction

(ℜNst ∈ ℜNst) ∧ (ℜNst /∈ ℜNst) . (2.3.13)

However a contradiction (2.3.13) it is not a true contradiction inside ZFCNst for the reason that
the countable collection ℑNst is not a set in the sense of the set theory ZFCNst.

In order to obtain a true contradiction inside ZFCNst we introduce the following
definitions.

Definition 2.3.9.We define now the countable set Γ∗Nst
ν / ∼ν by formula

∀y
{
[y]Nst ∈ Γ∗Nst

ν / ∼ν ⇐⇒
(
[y]Nst ∈ ΓNst

ν / ∼ν

)
∧ F̂rNst(y, v) ∧ [∃!XΨy,ν (X)]

}
. (2.3.14)

Remark 2.3.4. Note that from the axiom of separation it follows directly that Γ∗Nst
ν / ∼ν is a set

in the sense of the set theory ZFCst.

Definition 2.3.10. We define now the countable set ℑ∗
Nst by formula

∀Y
{
Y ∈ ℑ∗

Nst ⇐⇒ ∃y
[(
[y]Nst ∈ Γ∗Nst

ν / ∼ν

)
∧ (gZFCNst (X) = ν) ∧ Y = X

]}
. (2.3.15)

Note that from the axiom schema of replacement it follows directly that ℑ∗
st is a set in the sense of

the set theory ZFCNst.

Definition 2.3.11. We define now the countable set ℜ∗
Nst by formula

∀X (X ∈ ℑ∗
Nst) [X ∈ ℜ∗

Nst ⇐⇒ X /∈ X] . (2.3.16)

Note that from the axiom schema of separation it follows directly that ℜ∗
Nst is a set in the sense of

the set theory ZFCNst.

11
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Remark 2.3.5. Note that ℜ∗
Nst ∈ ℑ∗

Nst since ℜ∗
Nst is definable by the following formula

Ψ∗ (Z) , ∀X (X ∈ ℑ∗
Nst) [X ∈ Z ⇐⇒ X /∈ X] . (2.3.17)

Theorem 2.3.1. Set theory ZFCNst is inconsistent.

Proof. From (2.3.16) and Remark 2.3.5 we obtain ℜ∗
Nst ∈ ℜ∗

Nst ⇐⇒ ℜ∗
Nst /∈ ℜ∗

Nst from which one
obtains a contradiction

(ℜ∗
Nst ∈ ℜ∗

Nst) ∧ (ℜ∗
Nst /∈ ℜ∗

Nst) . (2.3.18)

3 Avoiding the Contradictions from Set Theory ZFC
Hs
2

and Set Theory ZFCst Using Quinean Approach

In order to avoid difficulties mentioned above we use well known Quinean approach [13].

3.1 Quinean set theory NF

Remind that the primitive predicates of Russellian unramified typed set theory (TST), a streamlined
version of the theory of types, are equality = and membership ∈ . TST has a linear hierarchy of
types: type 0 consists of individuals otherwise undescribed. For each (meta-) natural number n,
type n + 1 objects are sets of type n objects; sets of type n have members of type n − 1. Objects
connected by identity must have the same type. The following two atomic formulas succinctly
describe the typing rules: xn = yn and xn ∈ yn+1.

The axioms of TST are:

Extensionality: sets of the same (positive) type with the same members are equal.

Axiom schema of comprehension:

If Φ(xn) is a formula, then the set {xn | Φ(xn)}n+1 exists i.e., given any formula Φ(xn), the formula

∃An+1∀xn[xn ∈ An+1 ↔ Φ(xn)] (3.1.1)

is an axiom where An+1 represents the set {xn | Φ(xn)}n+1 and is not free in Φ(xn).

Quinean set theory [13] (New Foundations) seeks to eliminate the need for such superscripts.

New Foundations has a universal set, so it is a non-well founded set theory. That is to say,
it is a logical theory that allows infinite descending chains of membership such as . . . xn ∈
xn−1 ∈ . . . x3 ∈ x2 ∈ x1. It avoids Russell’s paradox by only allowing stratifiable formulae in
the axiom of comprehension. For instance x ∈ y is a stratifiable formula, but x ∈ x is not (for
details of how this works see below).

Definition 3.1.1. In New Foundations (NF ) and related set theories, a formula Φ in the language
of first-order logic with equality and membership is said to be stratified if and only if there is a
function f (x ) which sends each variable appearing in Φ [considered as an item of syntax] to a natural
number (this works equally well if all integers are used) in such a way that any atomic formula x ∈ y
appearing in Φ satisfies f (x ) + 1 = f (y) and any atomic formula x = y appearing in Φ satisfies
f (x ) = f (y).

Quinean set theory.

Axioms and stratification are:

the well-formed formulas of New Foundations (NF ) are the same as the well-formed formulas of
TST, but with the type annotations erased. The axioms of NF are.

12
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Extensionality: two objects with the same elements are the same object.

A comprehension schema: all instances of TST Comprehension but with type indices dropped (and
without introducing new identifications between variables).

By convention, NF’s Comprehension schema is stated using the concept of stratified formula and
making no direct reference to types. Comprehension then becomes.

Axiom schema of comprehension:

{x | Φs} exists for each stratified formula Φs.

Even the indirect reference to types implicit in the notion of stratification can be eliminated.
Theodore Hailperin showed in 1944 that Comprehension is equivalent to a finite conjunction of
its instances, [14] so that NF can be finitely axiomatized without any reference to the notion of
type. Comprehension may seem to run afoul of problems similar to those in naive set theory, but
this is not the case. For example, the existence of the impossible Russell class {x | x /∈ x} is not an
axiom of NF, because x /∈ x cannot be stratified.

3.2 Set theory ZFC
Hs

2 , ZFCst and set theory ZFCNst with stratified
axiom schema of replacement

The stratified axiom schema of replacement asserts that the image of a set under any function
definable by stratified formula of the theory ZFCst will also fall inside a set.

Stratified Axiom schema of replacement.

Let Φs (x, y, w1, w2, . . . , wn) be any stratified formula in the language of ZFCst whose free variables
are among x, y,A,w1, w2, . . . , wn, so that in particular B is not free in Φs. Then

∀A∀w1∀w2...∀wn [∀x (x ∈ A =⇒ ∃!yΦs (x, y, w1, w2, . . . , wn)) =⇒
=⇒ ∃B∀x (x ∈ A =⇒ ∃y (y ∈ B ∧ Φs (x, y, w1, w2, . . . , wn)))] ,

(3.2.1)

i.e., if the relation Φs (x, y, ...) represents a definable function f,A represents its domain, and f(x)
is a set for every x ∈ A, then the range of f is a subset of some set B.

Stratified Axiom schema of separation.

Let Φs (x,w1, w2, . . . , wn) be any stratified formula in the language of ZFCst whose free variables
are among x,A,w1, w2, . . . , wn, so that in particular B is not free in Φs. Then

∀w1∀w2...∀wn∀A∃B∀x [x ∈ B ⇐⇒ (x ∈ A ∧ Φs (x,w1, w2, . . . , wn))] , (3.2.2)

Remark 3.2.1. Notice that the stratified axiom schema of separation follows from the stratified
axiom schema of replacement together with the axiom of empty set.

Remark 3.2.2. Notice that the stratified axiom schema of replacement (separation) obviously
violeted any contradictions (2.1.20), (2.2.18) and (2.3.18) mentioned above. The existence of the
countable Russell sets ℜ∗Hs

2 ,ℜ∗
st and ℜ∗

Nst impossible, because x /∈ x cannot be stratified.

4 Second-order Set Theory ZFC2 with the Full Second-
order Semantics

4.1 Second order set theory ZFC2 with urlogic

Remind that urlogic has the following characteristics [6].
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1. Sentences of urlogic are finite strings of symbols. That a string of symbols is a sentence of
urlogic, is a non-mathematical judgement.

2. Some sentences are accepted as axioms. That a sentence is an axiom, is a non-mathematical
judgement.

3. Derivations are made from axioms. The derivations obey certain rules of proof. That a derivation
obeys the rules of proof, is a non-mathematical judgement.

4. Derived sentences can be asserted as facts.

Remark 4.1.1. Let ZFCUl
2 be second order set theory ZFC2 with urlogic. Note that in ZFCUl

2

by using the rules of DED2 we dealing without any reference to semantics, i.e. satisfiability in
some standard model, validity etc.

Definition 4.1.1. Let ΓUl
X be the countable collection of the all 1-place open wff’s of the set theory

ZFCUl
2 that contains free occurrences of the variable X.

Let Ψ1 (X) ,Ψ2 (X) be 1-place open wff’s of the set theory ZFCUl
2 . We define now the equivalence

relation (· ∼X ·) ⊂ ΓUl
X × ΓUl

X by

Ψ1 (X) ∼X Ψ2 (X) ⇐⇒ ∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)] (4.1.1)

For any Ψ (X) ∈ ΓUl
X let [Ψ (X)]Ul ,

{
Φ(X) ∈ ΓUl

X |Ψ(X) ∼ Φ(X)
}

denote the equivalence class

to which Ψ (X) belongs. All elements of ΓUl
X equivalent to each other are also elements of the same

equivalence class. The collection of all possible equivalence classes of ΓUl
X by ˜X , denoted ΓUl

X / ∼X

ΓUl
X / ∼X,

{
[Ψ (X)]Ul |Ψ(X) ∈ ΓUl

X

}
. (4.1.2)

Let FrUl
2 (y, v) be the relation : y is the Gödel number of a wff of the set theoryZFCUl

2 that contains
free occurrences of the variable X with Gödel number v [9].

Note that the relation FrUl
2 (y, v) is expressible in ZFCUl

2 by a wff F̂r
Ul

2 (y, v).

Note that for any y, v ∈ N by definition of the relation FrUl
2 (y, v) follows that

F̂r
Ul

2 (y, v) ⇐⇒ ∃!Ψ (X)
[(

gZFCUl
2

(Ψ (X)) = y
)
∧
(
gZFCUl

2
(X) = ν

)]
, (4.1.3)

where Ψ (X) is a unique wff of ZFCUl
2 which contains free occurrences of the variable X with Gödel

number v. We denote a unique wff Ψ (X) defined by using equivalence (4.1.3) by symbol ΨUl
y,ν (X) ,

i.e.

F̂r
Ul

2 (y, v) ⇐⇒ ∃!ΨUl
y,ν (X)

[(
gZFCUl

2

(
ΨUl

y,ν (X)
)
= y

)
∧
(
gZFCUl

2
(X) = ν

)]
. (4.1.4)

Definition 4.1.2. Let gZFCUl
2

(X) = ν. Let ΓUl
ν be a set of the all Gödel numbers of the 1-place

open wff’s of the set theory ZFCUl
2 that contains free occurrences of the variable X with Gödel

number v, i.e.

ΓUl
ν =

{
y ∈ N| ⟨y, ν⟩ ∈ FrUl

2 (y, v)
}
, (4.1.5)

or in the following equivalent form:

∀y (y ∈ N)
[
y ∈ ΓUl

ν ⇐⇒ (y ∈ N) ∧ F̂r
Ul

2 (y, v)
]
. (4.1.6)

Remark 4.1.2. Note that from the axiom of separation it follows directly that ΓUl
ν is a set in the

sense of the set theory ZFCUl
2 .

Definition 4.1.3. (i) We define now the equivalence relation
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(· ∼ν ·) ⊂ ΓUl
ν × ΓUl

ν (4.1.7)

in the sense of the set theory ZFCUl
2 by

y1 ∼ν y2 ⇐⇒
(
∀X

[
ΨUl

y1,ν (X) ⇐⇒ ΨUl
y2,ν (X)

])
. (4.1.8)

For any y1 ∈ ΓUl
v let [y1]Ul ,

{
y ∈ ΓUl

X |y1 ∼ν y2
}
denote the equivalence class to which y1 belongs.

The collection of all possible equivalence classes of ΓUl
ν by ˜ν , denoted ΓUl

ν / ∼ν

ΓUl
2 / ∼ν,

{
[y]Ul |y ∈ ΓUl

ν

}
. (4.1.9)

Remark 4.1.3. Note that from the axiom of separation it follows directly that ΓHs
ν / ∼ν is a set

in the sense of the set theory ZFCUl
2 .

Definition 4.1.4. Let ℑUl
2 be the countable collection of all sets definable by 1-place open wff of

the set theory ZFCUl
2 , i.e.

∀Y
{
Y ∈ ℑUl

2 ⇐⇒ ∃Ψ(X)
[(
[Ψ (X)]Ul ∈ ΓUl

X / ∼X

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (4.1.10)

Definition 4.1.5. We rewrite now (4.1.10) in the following equivalent form

∀Y
{
Y ∈ ℑUl

2 ⇐⇒ ∃Ψ(X)
[(
[Ψ (X)]Ul ∈ Γ∗Ul

X / ∼X

)
∧ (Y = X)

]}
, (4.1.11)

where the countable collection Γ∗Ul
X / ∼X is defined by

∀Ψ(X)
{
[Ψ (X)]Ul ∈ Γ∗Ul

X / ∼X ⇐⇒
[(
[Ψ (X)]Ul ∈ ΓUl

X / ∼X

)
∧ ∃!XΨ(X)

]}
. (4.1.12)

Definition 4.1.6. Let ℜUl
2 be the countable collection of all sets such that

∀X
(
X ∈ ℑUl

2

) [
X ∈ ℜUl

2 ⇐⇒ X /∈ X
]
. (4.1.13)

Remark 4.1.4. Note that ℜUl
2 ∈ ℑUl

2 since ℜUl
2 is a collection definable by 1-place open wff

Ψ
(
Z,ℑUl

2

)
, ∀X

(
X ∈ ℑUl

2

)
[X ∈ Z ⇐⇒ X /∈ X] . (4.1.14)

From (4.1.13) one obtains

ℜUl
2 ∈ ℜUl

2 ⇐⇒ ℜUl
2 /∈ ℜUl

2 . (4.1.15)

But (4.1.15) gives a contradiction(
ℜUl

2 ∈ ℜUl
2

)
∧
(
ℜUl

2 /∈ ℜUl
2

)
. (4.1.16)

However contradiction (2.1.16) it is not a contradiction inside ZFCUl
2 for the reason that the

countable collection ℑUl
2 is not a set in the sense of the set theory ZFCUl

2 .

In order to obtain a contradiction inside ZFCUl
2 we introduce the following definitions.

Definition 4.1.7. We define now the countable set Γ∗Ul
ν / ∼ν by

∀y
{
[y]Ul ∈ Γ∗Ul

ν / ∼ν ⇐⇒
(
[y]Ul ∈ ΓUl

ν / ∼ν

)
∧ F̂r

Ul

2 (y, v) ∧
[
∃!XΨUl

y,ν (X)
]}

. (4.1.17)

Remark 4.1.5. Note that from the axiom of separation it follows directly that Γ∗Ul
ν / ∼ν is a set

in the sense of the set theory ZFCUl
2 .

Definition 4.1.8.We define now the countable set ℑ∗Ul
2 by formula

∀Y
{
Y ∈ ℑ∗Ul

2 ⇐⇒ ∃y
[(
[y]Ul ∈ Γ∗Ul

ν / ∼ν

)
∧
(
gZFCUl

2
(X) = ν

)
∧ Y = X

]}
. (4.1.18)

Note that from the axiom schema of replacement (1.1.1) it follows directly that ℑ∗Hs
2 is a set in the

sense of the set theory ZFCUl
2 .

Definition 4.1.9. We define now the countable set ℜ∗Ul
2 by formula
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∀X
(
X ∈ ℑ∗Ul

2

) [
X ∈ ℜ∗Ul

2 ⇐⇒ X /∈ X
]
. (4.1.19)

Note that from the axiom schema of separation it follows directly that ℜ∗Ul
2 is a set in the sense of

the set theory ZFCUl
2 .

Remark 4.1.6. Note that ℜ∗Ul
2 ∈ ℑ∗Ul

2 since ℜ∗Ul
2 is definable by the following formula

Ψ∗ (Z) , ∀X
(
X ∈ ℑ∗Ul

2

)
[X ∈ Z ⇐⇒ X /∈ X] . (4.1.20)

Theorem 4.1.1. Set theory ZFCUl
2 is inconsistent.

Proof. From (4.1.19) and Remark 4.1.6 we obtain ℜ∗Ul
2 ∈ ℜ∗Ul

2 ⇐⇒ ℜ∗Ul
2 /∈ ℜ∗Ul

2 from

which immediately one obtains a contradiction(
ℜ∗Ul

2 ∈ ℜ∗Ul
2

)
∧
(
ℜ∗Ul

2 /∈ ℜ∗Ul
2

)
. (4.1.21)

4.2 Second-order set theory ZFC2 with the full
second-order semantics

Remind that the canonical approach of second order logic with full second-order semantics to the
foundations of mathematics is that mathematical propositions have the form

U |= Φ (4.2.1)

where U is a mathematical structure, such as integers, reals etc., and is a mathematical statement
written in second order logic. If A is one of the structures, such as (N,+,×, <) or (R,+,×, <), for
which there is a second order sentence ΞU such that

∀W (W |= ΞU ⇐⇒ W ∼= U) , (4.2.2)

then (4.2.2) can be expressed as a second order semantic logical truth

|= ΞU =⇒ Φ. (4.2.3)

Remark 4.2.1. Let ZFCfss
2 be second order set theory ZFC2 with the full second-order semantics.

(1) There is no completeness theorem for second-order logic.

(2) Nor do the axioms of second-order ZFCfss
2 imply a reflection principle which ensures that if a

sentence of second-order set theory is true, then it is true in some standard model.

Remark 4.2.2. Thus there may be sentences of the language of second-order set theory ZFCfss
2 :

(i) that are true but unsatisfiable, or

(ii) sentences that are valid, but false.

Remark 4.2.3. For example let Z be the conjunction of all the axioms of second-order ZFCfss
2 .

Z is surely true. But the existence of a model for Z requires the existence of strongly inaccessible
cardinals. The axioms of ZFCfss

2 don’t entail the existence of strongly inaccessible cardinals, and
hence the satisfiability of Z is independent of ZFCfss

2 . Thus, Z is true but its unsatisfiability is
consistent with ZFCfss

2 .

Definition 4.2.1. Well formed formula Ψ of ZFCfss
2 is a well formed formula of the first order

(wff1) if Ψ contain only first-order variables and first-order quantifiers.

Let Γ♯fss
X be the countable collection of the all 1-place open wff1’s of the set theory ZFCfss

2 that
contains free occurrences of the first-order variable X.

Let Ψ1 (X) ,Ψ2 (X) be 1-place open wff1’s of the set theory ZFCfss
2 .We define now the equivalence

16
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relation (· ∼X ·) ⊂ Γ♯fss
X × Γ♯fss

X by

Ψ1 (X) ∼X Ψ2 (X) ⇐⇒ ∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)] (4.2.4)

For any Ψ (X) ∈ Γ♯fss
X let

[Ψ (X)]♯fss ,
{
Φ(X) ∈ Γ♯fss

X |Ψ(X) ∼ Φ(X)
}

denotes the equivalence class to which Ψ (X) belongs. All elements of Γ♯fss
X equivalent to each other

are also elements of the same equivalence class. The collection of all possible equivalence classes of
Γ♯fss
X by ˜X , denoted Γ♯fss

X / ∼X

Γ♯fss
X / ∼X,

{
[Ψ (X)]♯fss |Ψ(X) ∈ Γ♯fss

X

}
. (4.2.5)

Let Fr♯fss2 (y, v) be the relation : y is the Gödel number of a wff of the set theory ZFC♯fss
2 that

contains free occurrences of the first-order variable X with Gödel number v [9].

Note that the relation Fr♯fss2 (y, v) is expressible in ZFCfss
2 by a wff1 F̂r

♯fss

2 (y, v).

Note that for any y, v ∈ N by definition of the relation Fr♯fss2 (y, v) follows that

F̂r
♯fss

2 (y, v) ⇐⇒ ∃!Ψ (X)
[(

g
ZFC

fss
2

(Ψ (X)) = y
)
∧
(
g
ZFC

fss
2

(X) = ν
)]

, (4.2.6) where

Ψ (X) is a unique wff1 of ZFCfss
2 which contains free occurrences of the variable X with Gödel

number v. We denote a unique wff Ψ (X) defined by using equivalence (4.2.6) by symbol Ψ♯fss
y,ν (X) ,

i.e.

F̂r
♯fss

2 (y, v) ⇐⇒ ∃!Ψ♯fss
y,ν (X)

[(
g
ZFC

fss
2

(
Ψ♯

y,ν (X)
)
= y

)
∧
(
g
ZFC

fss
2

(X) = ν
)]

. (4.2.7)

Remark 4.2.4. In order to avoid difficulties mentioned above,see Remark 4.2.1-Remark 4.2.3 we
dealing with the countable collection Γ♯fss

X of the all 1-place open wff1’s of the set theory ZFCfss
2 .

Definition 4.2.2. Let g
ZFC

fss
2

(X) = ν.Let Γ♯fss
ν be a set of all Gödel numbers of 1-place open

wff1’s of the set theory ZFCfss
2 that contains free occurrences of the first-order variable X with

Gödel number v, i.e.

Γ♯fss
ν =

{
y ∈ N| ⟨y, ν⟩ ∈ Fr♯fss2 (y, v)

}
, (4.2.8)

or in the following equivalent form

∀y (y ∈ N)
[
y ∈ Γ♯fss

ν ⇐⇒ (y ∈ N) ∧ F̂r
♯fss

2 (y, v)
]
. (4.2.9)

Remark 4.2.5. Note that from the axiom of separation it follows directly that Γ♯fss
ν is a set in

the sense of the set theory ZFCfss
2 .

Definition 4.2.3. (i) We define now the equivalence relation

(· ∼ν ·) ⊂ Γ♯fss
ν × Γ♯fss

ν (4.2.10)

in the sense of the set theory ZFCfss
2 by

y1 ∼ν y2 ⇐⇒
(
∀X

[
Ψ♯fss

y1,ν (X) ⇐⇒ Ψ♯fss
y2,ν (X)

])
. (4.2.11)

The collection of all possible equivalence classes of Γ♯fss
ν by ˜ν , denoted Γ♯fss

ν / ∼ν

Γ♯fss
v / ∼ν,

{
[y]♯fss |y ∈ Γ♯fss

ν

}
. (4.2.12)

Remark 4.2.6. Note that from the axiom of separation it follows directly that Γ♯fss
ν / ∼ν is a set

in the sense of the set theory ZFCfss
2 .
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Definition 4.2.4. Let ℑ♯fss
2 be the countable collection of the all sets definable by 1-place open

first order wff of the set theory ZFCfss
2 , i.e.

∀Y
{
Y ∈ ℑ♯fss

2 ⇐⇒ ∃Ψ(X)
[(

[Ψ (X)]♯fss ∈ Γ♯fss
X / ∼X

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (4.2.13)

Definition 4.2.5. We rewrite now (4.2.13) in the following equivalent form

∀Y
{
Y ∈ ℑ∗♯fss

2 ⇐⇒ ∃Ψ(X)
[(

[Ψ (X)]♯fss ∈ Γ∗♯fss
X / ∼X

)
∧ (Y = X)

]}
, (4.2.14)

where the countable collection Γ∗♯fss
X / ∼X is defined by

∀Ψ(X)
{
[Ψ (X)]♯fss ∈ Γ∗♯fss

X / ∼X ⇐⇒
[(

[Ψ (X)]♯fss ∈ Γ♯fss
X / ∼X

)
∧ ∃!XΨ(X)

]}
. (4.2.15)

Definition 4.2.6. Let ℜ∗♯fss
2 be the countable collection of all sets such that

∀X
(
X ∈ ℑ♯fss

2

) [
X ∈ ℜ∗♯fss

2 ⇐⇒ X /∈ X
]
. (4.2.16)

Remark 4.2.7. Note that ℜ∗♯fss
2 ∈ ℑ∗♯fss

2 since ℜ∗♯fss
2 is a collection definable by 1-place open

wff1

Ψ
(
Z,ℑ∗♯fss

2

)
, ∀X

(
X ∈ ℑ∗♯fss

2

)
[X ∈ Z ⇐⇒ X /∈ X] . (4.2.17)

From (4.2.16) one obtains

ℜ∗♯fss
2 ∈ ℜ∗♯fss

2 ⇐⇒ ℜ∗♯fss
2 /∈ ℜ∗♯fss

2 . (4.2.18)

But (4.2.18) gives a contradiction(
ℜ∗♯fss

2 ∈ ℜ∗♯fss
2

)
∧
(
ℜ∗♯fss

2 /∈ ℜ∗♯fss
2

)
. (4.2.19)

However contradiction (2.2.19) it is not a contradiction inside ZFCfss
2 for the reason that the

countable collection ℑ∗♯fss
2 is not a set in the sense of the set theory ZFCfss

2 .

In order to obtain a contradiction inside ZFCfss
2 we introduce the following

definitions.

Definition 4.2.7. We define now the countable set Γ∗♯fss
ν / ∼ν by

∀y
{
[y]Ul ∈ Γ∗♯fss

ν / ∼ν ⇐⇒
(
[y]♯fss ∈ Γ∗♯fss

ν / ∼ν

)
∧ F̂r

∗♯fss
2 (y, v) ∧

[
∃!XΨ♯fss

y,ν (X)
]}

. (4.2.20)

Remark 4.2.8. Note that from the axiom of separation it follows directly that Γ∗Ul
ν / ∼ν is a set

in the sense of the set theory ZFCfss
2 .

Definition 4.2.8. We define now the countable set ℑ∗♯fss
2 by formula

∀Y
{
Y ∈ ℑ∗♯fss

2 ⇐⇒ ∃y
[(

[y]♯fss ∈ Γ∗♯fss
ν / ∼ν

)
∧
(
g
ZFC

fss
2

(X) = ν
)
∧ Y = X

]}
. (4.2.21)

Note that from the axiom schema of replacement (1.1.1) it follows directly that ℑ∗♯fss
2 is a set in

the sense of the set theory ZFCfss
2 .
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Definition 4.2.9. We define now the countable set ℜ∗♯fss
2 by formula

∀X
(
X ∈ ℑ∗♯fss

2

) [
X ∈ ℜ∗♯fss

2 ⇐⇒ X /∈ X
]
. (4.2.22)

Note that from the axiom schema of separation it follows directly that ℜ∗♯fss
2 is a set in the sense

of the set theory ZFCfss
2 .

Remark 4.2.9. Note that ℜ∗♯fss
2 ∈ ℑ∗Ul

2 since ℜ∗Ul
2 is definable by the following formula

Ψ∗ (Z) , ∀X
(
X ∈ ℑ∗♯fss

2

)
[X ∈ Z ⇐⇒ X /∈ X] . (4.2.23)

Theorem 4.2.1. Set theory ZFCfss
2 is inconsistent.

Proof. From (4.2.22) and Remark 4.1.6 we obtain ℜ∗♯fss
2 ∈ ℜ∗♯fss

2 ⇐⇒ ℜ∗♯fss
2 /∈ ℜ∗Ul

2 from which
immediately one obtains a contradiction(

ℜ∗♯fss
2 ∈ ℜ∗♯fss

2

)
∧
(
ℜ∗♯fss

2 /∈ ℜ∗♯fss
2

)
. (4.2.24)

5 Conclusions

a In this paper we have proved that set theory ZFC + ∃MZFC
st is inconsistent.

b This result originally was obtained in [10], [15] and [11] by using essentially another complicated
approach.

.
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