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ABSTRACT 
 

Aims/Objectives: The efforts to eradicate the wild poliovirus since 1988 have successfully reduced 
its global prevalence by 99%. However, as of 2024, Pakistan and Afghanistan remain the only two 
endemic countries facing the virus transmission. This study employs a transmission dynamic model 
to understand the persistence of wild poliovirus type 1 (WPV1) in Pakistan.  
Study Design: An ordinary differential equations-based deterministic type of mathematical model 
was developed. 
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Place and Duration of Study: Department of Epidemiology and Public Health and Institute of 
Microbiology, University of Agriculture Faisalabad, March 2023 to August 2023.  
Methodology: We included the number of reported polio cases and the proportion of missed 
children by supplementary immunization activities (SIAs) across the country from 2017-2022. The 
model considered both human-human and environment-human virus transmission through sewage 
contamination and these are represented by time-dependent transmission rate parameters. The 
parameter estimation was done by model fitting to the reported data of WPV1 cases. The model 
simulations then predicted the future polio infections in Pakistan.  
Results: Our analysis identified that the asymptomatic infectious population missed by the SIAs is 
the major contributor to disease persistence in the country. Moreover, the environment can 
contribute to virus transmission in areas with poor WASH infrastructure and under-immunized 
populations. The estimated basic reproduction number through the next-generation matrix method 
was 1.61 while the estimated effective reproduction number was 0.12. The model showed a better 
predictive ability than constant transmission rate models. The numerical simulations considering the 
reduction in the virus-shedding rate by the asymptomatic population resulted in an 85% reduction in 
future polio cases in Pakistan.  
Conclusion: The results suggest that endemic virus transmission will continue subject to the 
current higher vaccination coverage across the country. The model can be further utilized to guide 
eradication efforts for targeted allocation of preemptive measures. 
 

 

Keywords: Dynamic modeling; polio eradication; transmission ecology; risk analysis; 
biomathematics; vaccination; environmental surveillance. 

 

1. INTRODUCTION 
 

Poliomyelitis (Polio) is a highly contagious, 
potentially debilitating, and incurable disease 
caused by the poliovirus. The virus primarily 
affects children under the age of five years and 
can invade the central nervous system, resulting 
in permanent paralysis [1]. Transmission occurs 
through either the fecal-oral or oral-oral routes 
[2]. In the early 20th century, poliovirus was the 
most feared pathogen among industrialized 
nations until the development of a vaccine in the 
1950s [3]. Since the launch of the Global Polio 
Eradication Initiative (GPEI) by the World Health 
Organization (WHO) in 1988, wild poliovirus 
infections have reduced significantly. Mass 
immunization against the virus has led to the 
complete eradication of poliovirus serotypes 2 
and 3, leaving only two endemic countries, 
Pakistan and Afghanistan, still affected by wild 
poliovirus type 1 (WPV1) transmission [4,5]. This 
ongoing circulation of the virus poses a threat to 
the success of eradication efforts in polio-free 
regions [6].   
 

Intensified immunization efforts have reduced the 
incidence of wild poliovirus cases in Pakistan; 
however, the country faces several challenges in 
effectively implementing eradication policies. 
These challenges include geopolitical instability, 
government negligence, lack of efficient public 
health infrastructure, and general misconceptions 
regarding polio vaccines [7]. Moreover, the 
neighboring country; Afghanistan is also battling 

constant virus transmission which also poses an 
immense threat to eradication efforts in Pakistan 
as the two countries are considered to be one 
epidemiological block due to the highly porous 
border and extensive population migrations [8]. 
Thus, it has been considered that if Pakistan 
achieves eradication Afghanistan will soon follow 
and the world will eventually achieve a milestone 
of global polio eradication.  
 

Mathematical models have long assisted 
policymakers in identifying improved vaccination 
strategies and optimizing surveillance [9]. In this 
study, we developed a deterministic 
mathematical model based on ordinary 
differential equations (ODEs) to evaluate the 
WPV1 transmission in Pakistan. The model 
considers both human-human and environment-
human transmission of the virus through the 
fecal-oral route owing to sewage water 
contamination [10]. This route is also the focus of 
environmental surveillance efforts to detect the 
silent circulation of the virus in a population [11]. 
Another significant aspect of this study is the 
incorporation of different types of time-dependent 
transmission rates to reflect the epidemiological 
characteristics of polio infections in the country. 
These transmission rates change in response to 
various intervention measures and human 
behavior during different periods. By 
incorporating these features, our model can 
improve its predictive accuracy and enhance our 
understanding of the periodic polio outbreaks in 
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Pakistan. Thus it will lead to an effective 
resource allocation to interrupt the transmission 
and achieve eradication. 
 

2. MATERIALS AND METHODS 
 

A mathematical model is adapted to understand 
the transmission dynamics of WPV1 in Pakistan. 
Our modelling strategy is inspired by the 
approach used by Yang and Wang (2021) to 
model COVID-19 transmission in Hamilton 
County, Tennessee, United States. In our model, 
the target population is divided into four classes: 
susceptible individuals 'S', exposed individuals 
'E', reported wild poliovirus cases 'I', and 
recovered individuals 'R', while compartment 'W' 
represents the poliovirus in sewage water. The 
former divided the host population into five 
classes, including hospitalized individuals, with 
the sixth compartment representing the 
concentration of coronavirus aerosols in the 
environment. Furthermore, the model assumed 
that the entire target population was susceptible 
to COVID-19, as the vaccine had not yet been 
introduced. Therefore, because the entire target 
population is susceptible, no scaling of the 
disease data was necessary. In contrast, our 
model includes children up to the age of five 
years who did not receive OPV during the annual 
National Immunization Days (NIDs) from 2017-
2022 as the susceptible population [12]. Fig. 2 
shows the NIDs conducted in Pakistan during 
this period along with the percentage of children 
who were missed by each campaign. This 
percentage was increasing till 2019 which led to 
a surge in cases see Fig. 1 and with the 
reduction of these missed children the reported 
cases dropped to a single case in the year 2021. 
The 'E' compartment represents the number of 
asymptomatic infections. We assumed that 70% 
of poliovirus infections would be asymptomatic 
[1]. The total number of WPV1 cases reported in 
the country during the targeted years is shown in 
Fig. 1. Data scaling was performed to provide the 
model with a more balanced landscape for 
training, leading to improved efficiency and 
predictive ability [13]. 
 

The following set of ordinary differential 
equations represents our model: 
 

dS

dt
 = Ʌ-βE (I, t) SE – βI (I, t) SI – βW (I, t) SW – μS 

 
dE

dt
 = βE (I, t) SE + βI (I, t) SI + βW (I, t) SW – (α + γ1 + μ) E 

 

dI

dt
 = α (1-p) E – (q + γ2 + μ) I 

 

dR

dt
 = γ1E + γ2I – μR 

dW

dt
 = ξ1E + ξ2I – σW 

 
Where the ‘Ʌ’ is a parameter for population 
inflow, μ = death rate, α = average incubation 
period of poliovirus, ‘p’ represents the proportion 
of asymptomatic population who develop 
paralysis, q = rate of infected persons who 
develop paralysis, σ is the removal rate of 
poliovirus from the environment; γ1 and γ2 are the 
rates of recovery of asymptomatic and 
symptomatic persons and ξ1 and ξ2 are the rates 
of contributing virus to the environment by the 
exposed and infected population respectively. 
These parameter values were obtained from a 
literature search and are listed in Table 1. The 
schematic representation of the model is given in 
Fig. 3. 

 
The incubation period of the poliovirus was 
considered to range from 3-21 days, in this 
study, the average value of 1/α = 12 days is 
considered [19]. The recovery period from polio 
depends on different factors, including the 
severity of infection and immune status of 
infected individual. The model includes the 
recovery period of the exposed and infected 
population. In cases of recovery from an 
asymptomatic state, the population usually 
shows no symptoms. The time period for this 
recovery was considered to be 7-14 days and in 
this model, an average recovery period of 10 
days is considered for those 70% of infections 
that go unnoticed, which gives γ1 = 1/10 per day 
[19]. Because it is a paralytic disease, in such 
cases, there is no recovery, but rather a 
permanent disability or death. However, those 
who experience milder symptoms can recover 
within 1-2 weeks, so a complete recovery period 
of 14 days is considered, which gives γ1 = 1/14 
per day [24]. Evaluation of the poliovirus removal 
rate from the environment showed a time period 
of 3 hours which led to 90% removal of the virus 
from the environment. Therefore, the virus 
removal rate from the environment is taken as 
σ = 0.12 per day [21]. Population immigration 
and emigration rates across the country are 
considered equivalent; thus, the rate of influx of 
the at-risk population was Λ = μN, where N is the 
magnitude of the target population. The natural 
birth and death rates of the population are 
considered equal to μ [26]. The shedding rate of 
wild poliovirus by the asymptomatic population 
[23] and infected individuals [22] is taken from 
the literature. The rate of paralysis in 
asymptomatic infections is p = 1.5% and that 
among infected individuals is q = 1% [25]. 
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Fig 1. Reported WPV1 cases in Pakistan from 2017-2022 
 

 
 

Fig. 2. National immunization activities occurred from 2017-2022 in Pakistan. the number of 
columns are representing the number of campaigns of every year and their height is indicating 

the proportion of missed children by each campaign [14–18] 
 

Table 1. Model parameter values for poliomyelitis 
 

Parameters Values References 

Incubation period(α) 12 days [19] 
Population size(N) 40000000 [17] 
Natural Birth & Death rate(μ)  160 [20] 
Environmental Removal Rate of virus(σ) 0.12/d [21] 
Virus shedding rate by infected persons(ξ2) 0.025/ml/person/day [22] 
Virus shedding rate by exposed persons(ξ1) 0.45/ml/person/day [23] 
Recovery rate of exposed individuals(γ1) 1/10/d [19] 
Recovery rate of infected individuals(γ2) 1/14/d [24] 
Rate of paralysis in exposed individuals(p) 1.5% [25] 
Rate of paralysis in infected individuals(q) <1% [25] 
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Fig. 3. A SEIRW model adapted for poliovirus transmission in Pakistan incorporating 
the effect of a virus-contaminated environment on the spread of the disease 

 
The model incorporates multiple transmission 
routes each of which is associated with non-
linear incidence. The functions βE(I, t) and βI(I, t) 
indicate the direct, human-human transmission 
rates between asymptomatic and susceptible 
populations and between infected and 
susceptible populations, respectively. The βW(I, t) 
function depicts the environment-human 
transmission rate. The model considers the 
chance of the infected (both latent and clinical) 
population coming into contact with other 
individuals which could lead to the shedding of 
the poliovirus into the environment by those 
individuals. Our assumption is based on the fact 
that in densely populated areas with poor 
sanitation facilities and an under-immunized or 
zero-dose population, the presence of poliovirus 
in the environment can pose a significant threat 
to the susceptible population [27]. The values of 
the transmission rate parameters are obtained by 
fitting the model to the reported data. The 
considered time domain is divided into two 3-
year time periods. These have distinct time 
intervals: [T1, T2] and [T2, T] and for some 
positive constants, T1 < T2 < T. The first period 
from 2017 to 2019 is considered the period of 
increased vaccine resistance Fig. 2, which 
eventually led to a surge in polio cases in 
Pakistan in 2019. We assumed that the disease 
transmission rate increased monotonically during 
the first period. The second period from 2020-
2022, on the other hand, was a period of 
increment in vaccination rates Fig. 2 and reduced 
exposure of the susceptible population to 

infectious individuals due to the nationwide 
lockdown to contain the COVID-19 pandemic. 
Thus, the transmission saw a major decline 
during this period and is assumed to no longer 
increase monotonically. The separate 
transmission rates for each of these periods are 
then developed to represent their unique 
properties.  

 

• Period 1: Here, we considered that all the 
transmission rates are increasing with the 
time ‘t’ during this transitional interval and 
are described as  

 
βE (I, t) = βE0 f (t),   βI(I, t) = βI0 f (t),  βW(I, t) = βW0 f (t) 

 
f (t) = 1+d (t-T1) with T1 < t < T2.  
 

Each transmission rate initiates from the 
minimum t = T1 and grows monotonically relative 
to t with a constant rate d. Parameter d was 
estimated through model fitting to the disease 
data. 

 

• Period 2: In this period, the transmission 
rates no longer increase monotonically but 
take the form  

 
βE (I, t) = βE0 f (T2) g (I), βI(I, t) = βI0 f (T2) g (I),  
βW(I, t) = βW0 f (T2) g (I), 
 

Here, f (t) = 1+d (T2-T1), and g (I) = 1 −
2

𝜋
tan-1 

(c· (I (t) - I (T2))) 
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Where T2 < t < T and function g(I) represents the 
variation in transmission rates in relation to I. 
This variation was due to increased vaccination 
and reduced exposure rates. The infection 
prevalence at the beginning of this period, t = T2, 
was represented by I(T2). The constant 'c' is 
used to adjust the magnitude of the difference, 
and its value is determined through data fitting. In 
addition, an inverse tangent is used to transfer 
this difference to a standard interval.  
 

Our modelling strategy considers the time-
dependent transmission rates of wild poliovirus in 
Pakistan. Typically, infectious disease models for 
poliovirus transmission in one of the last 
reservoirs of the virus consider only constant 
transmission scenarios [9]. By considering time-
dependent transmission rates, we can enhance 
the accuracy of model predictions for future 
disease trajectories in the country. This will also 
help us develop effective intervention strategies 
to control viral transmission. 
 

3. RESULTS 
 

A SEIRW modelling framework is utilized to 
study the transmission and spread of WPV1 in 
Pakistan. The disease pattern was observed 
during two periods: 2017-2019 and 2020-2022. 
In the first period, there was a rapid increase in 
the number of new cases, which can be 
attributed to a reduction in vaccination rates Fig. 
1 & 2. However, from 2020 to 2022, the number 
of cases decreased owing to increased 
vaccination rates and reduced exposure rates 
resulting from stay-at-home orders implemented 
to contain the transmission of COVID-19. 

Transmission rates were formulated for each of 
these periods, as previously described, to 
conduct data fitting and model simulations. 

 
3.1 Model Fitting to WPV1 cases in 

Pakistan during 2017-2019 
 
Initially, data fitting is conducted for the period of 
2017 to 2019 to estimate the values of the three 
transmission parameters, with two parameters 
representing human-human transmission and the 
other representing environment-human 
transmission. Based on the demographic and 
reported data, the initial conditions for this time 
period were set as (S, E, I, R, W) = (1200000, 
0.12, 0.05, 0, 22). The value of poliovirus 
concentration in the sewage water was obtained 
as 22 virions/ml [10]. Because our model did not 
consider developed immunity, the recovered 
individuals are considered to be equal to zero as 
an initial value for model calibration Fig. 4. Data 
fitting was performed using the estimated 
parameter values listed in Table 2.  

 
These results confirmed our assumption that a 
decrease in vaccination rates led to an increased 
transmission rate. The estimated parameter 
values show that asymptomatic individuals pose 
a significant threat to the susceptible population. 
Parameter d represents the rate of transmission 
increment during this time period as a function of 
t, and its estimated value is presented in Table 3. 
This increase was consistent and steadily rising, 
so instead of a decline in the epidemic curve, we 
observed a sharp surge in virus transmission and 
an increase in cases.   

 

 
 

Fig. 4. Model fitting results for the reported cases of Polio in Pakistan from 2017-2022 
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Table 2. WPV1 model parameter values estimated through model calibration 
 

                                Estimated 
Parameters 

Values 95% Confidence 
Interval 

Human-Human 
transmission rates 

Transmission rate 
from exposed to 
susceptible 
population (βE) 
 
Transmission rate 
from infected to 
susceptible 
population (βI) 

3x10−6 𝑝𝑒𝑟𝑠𝑜𝑛−1𝑦𝑒𝑎𝑟−1 
 
 
 
 
 
 
 

2x10−6𝑝𝑒𝑟𝑠𝑜𝑛−1𝑦𝑒𝑎𝑟−1 

2.05x10-6 – 3.99x10-6 
 
 
 
 
 
 
 
1.07x10-6 – 3.92 x10-6 

Environment-Human 
transmission rate 

Transmission rate 
from environment to 
susceptible 
population (βW) 

1.5x10−6𝑝𝑒𝑟𝑠𝑜𝑛−1𝑦𝑒𝑎𝑟−1 1.04x10-6 – 2.94x10-6 

 
Table 3. WPV1 model Parameter values estimated through model calibrations 

 

Parameters Values 95% Confidence Interval 

Rate of increase in transmission rate during the 
period of 2017-2019 (d) (Period 1) 

0.385/year 0.304 – 0.495 

Adjustment Parameter (c) (Period 2) 0.8/person 0.02 – 0.97 

 
During this period, the transmission of the 
system was non-autonomous because it 
depended on the time. In mathematical terms, a 
system of ordinary differential equations that 
relies on time as its independent variable is 
referred to as a non-autonomous system. The 
rate of transmission, represented by the 
parameter d increased over time, denoted by t. 
Because we assume that the increase in 
transmission during this period was due to a 
decrease in vaccination rates, the system can be 
classified as non-autonomous. Consequently, the 
basic reproduction number (R0) for this time 
domain cannot be calculated [28]. For a non-
autonomous system where there is no delay 
between exposure and the appearance of clinical 
cases, the reproduction number can be 
calculated by excluding the latent infection period 
[29]. However, this approach cannot be applied 
to polio infections. 
 

3.2 Model Fitting to WPV1 Cases in 
Pakistan during 2020-2022 

 
During the period 2020-2022, there was a more 
stable spread of infection as transmission no 
longer increased monotonically. This was a result 
of higher vaccination rates and decreased 
exposure of vulnerable populations to infectious 
individuals due to stay-at-home orders issued 
during the COVID-19 pandemic. The data fitting 

results are shown in Fig. 4 and Table 3 displays 
the estimated value of parameter c for this 
specific time frame. This parameter was used to 
add an extra dimension and transform the 
previous system of non-autonomous ODEs into 
an autonomous system. As a result, the 
transmission rates of poliovirus during this period 
were no longer dependent on time, but instead 
on the prevalence of polio infections in the 
population. The system is assumed to be time-
independent. Transmission now varies based on 
the contact rates between susceptible and 
infectious populations, as well as the number of 
individuals in both groups. Model calibration 
during this time period revealed that transmission 
was significantly reduced due to a decrease in 
contacts and the number of at-risk individuals as 
immunization rates increased. 
 
Here, in-sample validation is used for the re-
substitution validation method, where the 
goodness of fit is measured and compared using 
the root mean square error (RMSE) for our 
assumption of time-dependent transmission rates 
while for the model of COVID-19 transmission, 
normalized root mean square error (NRMSE) 
was used [26]. The formula for RMSE has been 
given as  
 

RMSE = √
∑ (Predictedi− Actuali)2N

i=1

N
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The ‘N’ represents the number of total data 
points in the data set. The RMSE value is 0.05, 
indicating good model accuracy and validating 
our assumption of time-dependent transmission 
rates compared with other models that consider 
constant transmission scenarios. Yang and 
Wang, (2021) also tested the validity of the 
constant transmission rate scenario for COVID-
19 transmission and found it to be less accurate 
than the assumption of a time-dependent 
transmission rate. On the other hand, we did not 
consider the model fitting results for the constant 
transmission rate for the entire period of 2017-
2022. However, upon testing the validity of this 
assumption using the RMSE, the obtained value 
is 0.44. This makes the constant transmission 
rate scenario less fitting than the time-dependent 
transmission rates for the two time periods.   
 

3.3 Reproduction Number (R0) 
 
The basic reproduction number (R0) is the 
average number of secondary infections caused 
by an initially infected person over their lifetime 
when the entire population is susceptible. If R0 ≤ 
1, the pathogen will be cleared from the 
population. However, if R0 > 1, the pathogen can 
spread throughout a susceptible population. R0 is 
a crucial parameter for estimating the ability of a 
pathogen to spread and cause an outbreak. This 
provides valuable insights into the efforts 
required to control the disease, such as prompt 
case identification, quarantine measures, and 
physical distancing to prevent contact between 
susceptible and infected individuals.  
 

In our developed model, the first time period is a 
non-autonomous time-dependent system, 

making it challenging to define the reproduction 
number for this period. The argument here is that 
non-autonomous disease dynamic systems 
consider the periodicity of infection occurrences. 
Therefore, the reproduction number becomes a 
function of time which can be calculated either by 
disregarding the recruitment of susceptible 
individuals in the model, or by overlooking the 
latent stage of infection.  
 
However, the reproduction numbers of time-
averaged systems (autonomous systems) are 
sufficient to explain the mitigation policies that 
need to be implemented. Thus, in the second 
instance, our model is an autonomous dynamic 
system in which the rate of disease transmission 
is solely a function of prevalence (I). The 
reproduction number (R0) for this period can be 
calculated as follows. 
 

βE (I, t) = βE (I), βI (I, t) = βI (I) and βW (I, t) = 
βW (I) for T2 < t < T.  

 
Here, the standard method for calculating the 
basic reproduction number, which is the next-
generation matrix technique was used 
Apparently, the ODE system of equations             
has a condition for the absence of the disease 
referred to as the disease-free equilibrium (DFE) 
at 
 

X0 = (S0, E0, I0, R0, W0) = (
Λ

𝜇
 , 0, 0, 0, 0) 

 
Here, E, I and W are considered as the infectious 
elements. Matrices F and V represent new 
infections and transitions between different 
disease stages, respectively.  

 
F =    βE0 (0) S0   βI0 (0) S0   βW0 (0) S0             V =           u1                      0         0 

          
    0
    0
    0

                
0
0
0

             
0
0
0
                                 

−α (1 − p)
−αp
−ξ1

       

   u2

−q
−ξ2

        
0
0
σ

  

 
 

Here u1 = α + γ1 + μ and u2 = q + γ2 + μ. Then, R0 of the given model will be the spectral radius of the 
next generation matrix FV-1 which is  

 
R0 = ρ (FV-1) = RE + RI + RW 

 

RE = 
βE (0)𝑆0

u1
    = 1.33 

RI = 
α (1−p) βI (0)S0

u1u2
  = 0.15 

RW =  
βW (0)S0

σu1
 (ξ1 +

ξ2α (1−p)

u2
 ) = 0.13 
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It estimates the disease risk during the second 
period. The first two terms, RE and RI represent 
the role of human-to-human transmission routes 
from non-clinical and clinical infectious 
populations respectively. The third term, RW 
characterizes the impact of the environment on 
the human transmission pathway through 
sewage contamination. Thus, we proceed as 
follows: 
 

R0 = 1.33 + 0.15 + 0.13 = 1.61 
 

The values indicate that exposure to 
asymptomatic infectious population makes the 
highest contribution, followed by the infected 
population, and then the environment makes the 
lowest contribution. All of these values combined 
make R0 almost equal to unity, indicating the 
persistence of the disease. Although the 
environment was found to play the least role in 
virus transmission, the rates were close enough 
to the rates of infected to susceptible 
populations, indicating that with low vaccination 
coverage and poor WASH infrastructure, the wild 
poliovirus contaminated environment can impact 
disease propagation.  
 
Another important measurement is the effective 
reproduction number (Reff or Rt), which is the 
expected number of new infections caused by 
infectious individuals, to which some individuals 
in the target population may no longer be 
susceptible. It is important to reduce this number 
to below one to control the spread of infection. In 
our case, our whole population was not 
susceptible; therefore, we calculated the effective 
reproduction number for the second time period 
using the derived value of the basic reproduction 
number. 
 

Reff = R0 (
S

N
) 

 

As a result, a value of 0.12 for the effective 
reproduction number is obtained, indicating the 
effectiveness of current intervention strategies in 
reducing the number of susceptible populations 
in the country. This is because the value of Reff is 
directly proportional to the magnitude of 
susceptible individuals in a target population, and 
when the number of at-risk individuals is high, 
the value of Reff is greater than 1. When the 
susceptible population is lower, the value of Reff 
is closer to 0, and the disease is contained.  
 

Using the estimated values of the parameters 
through the model calibration, predictions for the 

occurrence of future polio cases in Pakistan 
could be made in the near future. We simulated 
the developed model considering that the 
transmission rate no longer increases 
monotonically. Following the current vaccination 
scenario and assuming that vaccination rates 
can keep missing children at the current 
proportion of nearly 1% every year, the prediction 
of future transmission scenarios Fig. 5 and 6 
indicated that the transmission will remain 
endemic and that the number of reported cases 
will be lower than that previous years. The graph 
depicts that the model has the better predictive 
ability with the expected polio cases for the year 
2023 to be five with the maintained vaccination 
rate. On the other hand, the vaccination rate 
dropped in 2023 and reported cases were almost 
six in the same year closer to the model 
predictions [30,31]. However, the number of 
asymptomatic infections remains a problem, as 
the graph indicates a continuous rise in latent 
infections as the susceptible population 
accumulates over the years. 
 

3.4 Simulations with Varying Parameters 
 
The values of the model parameters can vary 
due to various factors, including environmental 
conditions, the evolution of population immunity, 
and changes in population movement patterns 
across the country. Here, the influence of the 
incubation period and virus-shedding rate of the 
asymptomatic population was estimated based 
on the proportion of reported cases. Fig. 5 
indicates that a higher incubation period leads to 
a lower number of reported cases. It has been 
observed that the poliovirus incubation period 
can range from 7-21 days or even up to 35 days. 
It also indicates that with an increase in the virus 
incubation period, the number of latent infections 
will increase as the virus takes longer to reach 
the symptomatic phase. Thus, there will be more 
asymptomatic individuals, posing a threat to the 
susceptible population. Fig. 6 presents the 
scenario when the poliovirus incubation period 
reaches 21 days and the number of latent 
infections is higher. This increases the threat of 
silent transmission of poliovirus in the 
community, as sub-clinical infections are a major 
source of silent circulation of the virus. The 
scenario can also be attributed to the failure of 
vaccination campaigns to achieve the target 
vaccination coverage [32]. The increase in virus 
incubation can be attributed to reduced or partial 
immunization. Incomplete vaccination due to 
various extrinsic and intrinsic factors can lead to 
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infections with longer incubation periods. This 
increase in the incubation period and 
asymptomatic infections, along with the resultant 
decrease in the number of reported cases, 
presented a scenario of silent circulation 
increasing uncertainty in public health measures 
[33]. This is particularly important in the case of 
isolated under-vaccinated sub-populations which 

pose a threat to the entire community. This can 
also be detected through environmental 
surveillance. The presence of positive samples 
indicated silent transmission of poliovirus 
throughout the country. This situation suggests 
that more targeted intervention efforts are 
required to vaccinate under-vaccinated 
partitioned sub-populations.  

 

 
 

Fig. 5. The expected number of polio cases from 2023-2025 with the ongoing immunization 
rates and when the incubation period reaches 21 days. The green line depicts the decreasing 
incidence rate with the reduction in the virus shedding rate of the asymptomatic population 

 

 
 

Fig. 6. The expected asymptomatic polio infections from 2023-2025 with the ongoing 
immunization strategies and when the incubation period reaches 21 days. The green line 

depicts the reduction in asymptomatic infections with reduced virus shedding 
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Another scenario of reducing the virus-shedding 
rate in asymptomatic individuals was tested by 
changing this parameter. A significant decline in 
the number of asymptomatic infections was 
observed. In addition, the curve for the proportion 
of the infected population flattens over time with 
the reduction of the virus-shedding rate by the 
sub-clinical infectious population. The shedding 
rates for the exposed and reported infections 
were considered equal. Fig. 5 and 6 represent 
the expected reported cases and latent infections 
to occur in the next three years, respectively, 
when the virus-shedding rates of the infected and 
exposed are equal. This indicates the importance 
of higher vaccination coverage and the need to 
consider population movement patterns in 
targeted immunization campaigns. This will also 
help reduce the number of positive 
environmental samples with wild poliovirus in the 
entire country. The graph suggests that with a 
reduction in the virus-shedding rate of latent 
individuals, the number of reported cases of 
poliovirus will continue to decrease until 
consistent intervention strategies completely 
remove the infected individuals from the 
community. This will ultimately help eradicate the 
virus from the country. 
 

4. DISCUSSION 
 
In this study, an ordinary differential equation-
based deterministic model was developed for 
poliovirus persistence in Pakistan. The model 
applies the concept of time-dependent 
transmission rates of polio infections. This 
assumption is usually considered for seasonal 
infections and takes into consideration the 
periodicity of the occurrence of a disease [34]. 
Moreover, the role of poliovirus-contaminated 
sewage water in the spread of infection was 
considered. In this model, both direct and indirect 
transmission routes, considering human-human 
and environment-human transmission, were 
incorporated. The period of 2017-2022 was 
considered for the numerical simulations and 
model validation. The considered time domain of 
6 years was divided into two 3-year time periods: 
variable transmission rates that increase 
monotonically with time in Period 1, and variable 
transmission rates that are shaped by disease 
prevalence and human behavior in Period 2. The 
model was applied to the WPV1 case data from 
Pakistan. The results of the present data fitting 
approach based on different transmission rates 
in different time periods show a better 
performance than that based on the standard 

approach of using uniform, constant   
transmission rates throughout the entire time 
domain. 
 

Martinez-Bakker et al. [35] previously conducted 
an analysis on the ecology of polio epidemics in 
the mid-20th century. The findings revealed that 
prior to the introduction of vaccination, only 
approximately 6% of infections were officially 
reported. The primary cause of these epidemics 
was the rise in birth rates. The study ultimately 
concluded that for vaccination campaigns to be 
more effective, it is crucial to consider population 
demographics and the seasonality of infections. 
Conversely, our modelling results indicate that as 
we approach the era of polio eradication, 
population demographics play an increasingly 
significant role in the occurrence of polio 
infections in Pakistan. The authors acknowledge 
that subclinical infections are more prevalent 
today than in the pre-vaccine era, which aligns 
with our current findings. Our model simulations 
predicted that the virus will continue to transmit in 
the presence of immunocompromised children. 
Therefore, it is imperative to monitor the 
movement patterns of asymptomatic 
unvaccinated individuals capable of spreading 
infections throughout the country. The rates of 
pathogen transmission are determined by two 
critical factors: the frequency of contact between 
susceptible and infectious individuals and the 
duration of contact and immunity within the 
population [36].  
 

Molodecky et al. [37] performed spatiotemporal 
analysis of routine surveillance data for wild 
poliovirus in Pakistan. The findings indicate that 
movement patterns are not as influential in 
predicting future polio cases in the country as the 
virus is mostly restricted to certain areas. 
However, our results revealed that movement 
patterns are major contributors to the constant 
expansion of the virus in Pakistan and can 
contribute significantly to accurate predictions of 
future polio cases. This is evident from the 
reduction in the number of cases during the 
COVID-19 lockdown when movement was 
restricted and transmission was assumed to no 
longer increase monotonically. Moreover, in 2023 
Sindh reported 2 of the total 6 polio cases in 
Pakistan after almost three years of being case-
free suggesting the important role of population 
movement in the spread of the disease across 
the country [38].   
 

Browne et al. [39] investigated the impact of 
routine and supplementary immunization 
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activities, as well as seasonality and 
environmental transmission, on the effective 
reproduction number for poliomyelitis. The study 
concluded that migration rates can significantly 
affect the overall reproduction number and 
optimal vaccine strategies. This emphasizes the 
importance of synchronizing pulse 
(supplemental) vaccination strategies and 
suggests that supplementary immunization, 
considering complete indirect virus transmission 
through the environment, would be most effective 
in reducing the reproduction number. Our 
simulation-based calculation of the effective 
reproduction number supports the effectiveness 
of national immunization strategies against 
poliovirus in Pakistan as it shows a decreasing 
trend in the incidence of new cases. 
Furthermore, our study considered both direct 
and indirect routes of virus transmission and the 
calculated effective reproduction number 
suggests that persistent supplementary 
immunization campaigns, when combined with 
spatiotemporal analysis of routine        
surveillance data, will ultimately lead to virus 
eradication. 
 

The proposed model can be further enhanced by 
incorporating spatial data on vaccination 
coverage and environmental surveillance results. 
This will enable the prediction of future polio 
infections and the allocation of timely resources 
across the country to stop the transmission of the 
virus. However, the study did not consider 
population demographics [23]. Therefore, the 
model can be modified to explicitly include the 
demographics of the entire vulnerable population 
in Pakistan. Moreover, the shedding rate of the 
virus in the target population may also be 
affected by the OPV vaccination status [40]. The 
model application did not consider the evolution 
of wild poliovirus in Pakistan over time. 
Consequently, it may not accurately reflect the 
infection prevalence in the distant future, as 
disease features can vary significantly over time. 
By including such dynamics associated with 
persistent virus transmission in the country, the 
modelling results can be improved and 
intervention strategies can be optimized to 
achieve eradication. 
 

5. CONCLUSION 
 

The transmission of wild poliovirus type 1 is 
expected to remain low in Pakistan subject to 
high vaccination coverage. The time-dependent 
transmission rates assumption for polio infections 
has a better predictive ability than the constant 

transmission rate models. Our modelling 
framework can be further enhanced by 
incorporating spatial data on immunization and 
routine surveillance to predict future cases in 
Pakistan and allocate preventive measures. 
Furthermore, the model concluded that indirect 
virus transmission through the fecal-oral route 
can impact the disease prevalence among 
under-immunized populations of areas with poor 
WASH infrastructure. The findings of this 
predictive model are important for eliminating the 
spread of wild poliovirus from the remaining 
endemic countries (Pakistan and Afghanistan) by 
enhancing the activity of the Global Polio 
Eradication Initiative.   
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