PLOS

Check for
updates

G OPEN ACCESS

Citation: Michael R, Kastel-Hansen J, March Groth
P, Bartels S, Salomon J, Tian P, et al. (2024) A
systematic analysis of regression models for
protein engineering. PLoS Comput Biol 20(5):
€1012061. https://doi.org/10.1371/journal.

pchi. 1012061

Editor: Piero Fariselli, Universita degli Studi di
Torino, ITALY

Received: September 26, 2023
Accepted: April 10, 2024
Published: May 3, 2024

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles. The
editorial history of this article is available here:
https://doi.org/10.1371/journal.pcbi.1012061

Copyright: © 2024 Michael et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All code required to
replicate the results can be found at https://github.
com/MachineLearningLifeScience/protein_
regression. All data, including computed

RESEARCH ARTICLE
A systematic analysis of regression models for
protein engineering

Richard Michael®'®, Jacob Kaestel-Hansen®2*, Peter March Groth® '3, Simon Bartels’,
Jesper Salomon?, Pengfei Tian®, Nikos S. Hatzakis?, Wouter Boomsma®'*

1 Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, 2 Department of
Chemistry, University of Copenhagen, Copenhagen, Denmark, 3 Enzyme Research, Novonesis, Kongens
Lyngby, Denmark, 4 Enzyme Research, Novozymes A/S, Kongens Lyngby, Denmark

® These authors contributed equally to this work.
* wb @di.ku.dk

Abstract

To optimize proteins for particular traits holds great promise for industrial and pharmaceuti-
cal purposes. Machine Learning is increasingly applied in this field to predict properties of
proteins, thereby guiding the experimental optimization process. A natural question is: How
much progress are we making with such predictions, and how important is the choice of
regressor and representation? In this paper, we demonstrate that different assessment cri-
teria for regressor performance can lead to dramatically different conclusions, depending on
the choice of metric, and how one defines generalization. We highlight the fundamental
issues of sample bias in typical regression scenarios and how this can lead to misleading
conclusions about regressor performance. Finally, we make the case for the importance of
calibrated uncertainty in this domain.

Author summary

Supervised machine learning is increasingly used to predict the function and properties of
proteins. The performance obtained with these methods relies on a multitude of factors
including how data is represented, how observations are distributed, how training is con-
ducted, and how performance is measured. In this paper, we systematically assess the
importance of these different components in a protein regression pipeline. We discuss the
benefits of using representations extracted from protein language models, the impact of
the choice of regression algorithm, and the role of uncertainty. Finally, to avoid mislead-
ing performance claims, we stress the need for carefully aligning the train/test setup to
reflect the setting in which the prediction algorithm will ultimately be applied.

Introduction

Accurate prediction of protein traits related to function and stability remains an important
challenge, both for i silico protein engineering and for assessing the phenotypic consequences
of genetic diseases [1-3]. Recent years have seen progress in unsupervised models for
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predicting the fitness effect arising from protein variants. For single protein families, statistical
models of aligned sequences have been used successfully to characterize the effect of mutations
through a change in (approximate) likelihood [4-10] and attention-based language models
have since extended this idea beyond single protein families [11-14].

While unsupervised models are very useful descriptors of variants with respect to a natural
baseline, protein engineering often requires us to go beyond the unsupervised setting. One rea-
son is that the function optimized for will often differ from the biological function selected for
by evolution [15]. Another is that we generally wish to improve our predictive capabilities as
we make more experimental observations of a system, which requires that we train models in a
supervised fashion.

Supervised learning is associated with a number of challenges. First of all, it requires us to
carefully consider how the available data are applied, since they are now used both for training
and evaluation. The data can be split into training and test sets in different ways, and the simi-
larities we permit between these sets will influence our assessment. The goal should be to
choose a test set that reflects the data distribution that we expect to see when the regressor is
ultimately applied in practice. But this matter is complicated by the fact that in an optimization
setting, regressors are frequently used partially out-of-domain, i.e. to make predictions on
sequences further from the wildtype than those in the training set, or distributed differently. A
representative test set might not be available in this case. Even the notion of in-domain and out-
of-domain is often not clear cut, and can depend on the choice of how a protein is encoded.

The embeddings computed by protein language models (PLMs) are for instance likely to have a
biologically richer notion of similarity than a distance based merely on amino acid identity.
The extrapolative setting also highlights the requirement for regression algorithms to provide
reliable uncertainty estimates. This is important to ensure that downstream decision, i.e. by
human practitioners of optimization algorithms, can be based on an informed trade-off
between the predicted fitness of proposed candidates and the uncertainty of these estimates.
Finally, supervised learning on protein sequences is made difficult by the fact that data sets for a
particular protein system are often very limited in size, and can have substantial sample biases.

In this paper, we systematically describe the challenges involved in supervised learning for
protein engineering. We describe the constituents of a protein regression pipeline (Fig 1),

—Encoding — — Regressor — Assessment
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14 - e )
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Fig 1. A general overview for supervised learning tasks on protein systems. For each protein exists labelled experimental assay Data, multiple sequence
alignments (MSA), and sequence representations (a subset of the Encodings annotated with the respective dimensionality). The language model (i.e. ESM-18
and PROTBERT) representations are the positional means of the internal representation (indicated by the bar). We fit and assess regressors, and select training and
validation data through different protocols (Assessment). From the performance and calibration results we assess an in-silico optimization task for variant

selection.

https://doi.org/10.1371/journal.pcbi.1012061.g001
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placing particular focus on the assessment stage. We show empirically that different choices at
this stage can have a dramatic impact on the conclusions drawn, and discuss how we can
design train/test splits to best reflect the generalization capabilities we desire for a given task.
We also investigate the role of embeddings of the input protein sequences, comparing several
recent language models with simpler alternatives. Finally, we consider the metrics used to mea-
sure performance, and highlight the importance of including calibration of predicted uncer-
tainties when comparing regression procedures.

Results

The fundamental objective in protein engineering is to find modifications, variants, of natu-
rally occurring amino acid sequences that optimize one or multiple properties of interest, e.g.
the thermostability of an enzyme [16, 17]. Since there are twenty naturally occurring amino
acids, the space of possible amino acid sequences of a given length L is 20", an astronomically
large number even for short proteins. In practice, engineering R&D pipelines often restrict
themselves to sequences that deviate by only a few mutations from a naturally occurring, wild-
type, sequence (WT). Exhaustive search through this restricted space is typically still intracta-
ble. In practice we are limited in time and resources, and the search strategies employed are
often based on combinations of random sampling and the intuition of domain experts. Devel-
oping better optimization strategies has therefore become an active area of research [18-21].

As part of such optimization strategies, the need arises to predict fitness values for unseen
protein sequences. One example is the surrogate function in a Bayesian Optimization setting,
which predicts the expected fitness value and its uncertainty of any candidate protein.
Together with an acquisition function which specifies a trade-off between exploration and
exploitation, this allows us to select new candidates optimally, according to a well-defined pro-
tocol. Our success in optimizing proteins thus depends critically on the ability to regress the
fitness of a protein against its sequence. Rather than working with the raw amino acid
sequence, the input can be encoded in various ways to facilitate modelling. A simple choice is
ONE-HOT-encoding, where each amino acid in a protein sequence or alignment is encoded in a
d-dimensional vector, where d is the number of different amino acid labels (typically 20 plus
gap symbols and nonstandard labels). In recent years, it has become clear that regression per-
formance can often be enhanced further by regressing against learned protein representations
[13, 22-24]. This can potentially simplify the search space and make it possible to extrapolate
further away from the wildtype sequence.

The next step is to choose a suitable regression algorithm. This choice will depend on fac-
tors such as 1) appropriate inductive bias, 2) expressivity relative to the amount of available
data, 3) attributes of a model such as the ability to predict uncertainties. Ultimately, a domi-
nant reason for the choice will be that a particular model is perceived to perform better on the
specific task of interest. As we discuss the pros and cons of different regression algorithms and
representations, it is thus of critical importance that we can reliably assess this performance. In
contrast to unsupervised fitness prediction, assessment in the supervised setting will require us
to split the data into train, validation, and test sets. Depending on the application task of inter-
est, different choices are meaningful, and this choice can have a substantial impact on the
reported performance. The performance will depend on the nature of the fitness landscape,
and the amount of available data. Since experimental assays typically produce only tens up to a
few thousands of measurements at a time, protein regression typically resides in the low-data
regime, thus restricting the capacity of regression algorithms we can meaningfully apply. The
experimental assays can also be of different quality, have different levels of coverage, and dis-
play more or less correlation to the functional trait of interest.
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These are thus the key components in a protein regression pipeline: the nature of the data,
its encoding, the regression algorithm, and the assessment strategy (Fig 1). We will now con-
sider them in turn.

Data

On the input side, protein fitness data can have different scope, ranging from sampling broadly
from naturally occurring sequences, sometimes referred to as wildtype exploration, to sam-
pling sequences locally around a single or a few naturally occurring sequences. Since our study
focuses on protein optimization, we consider the latter category here, but refer to related work
for considerations about wild type exploration [24, 25].

Experimental techniques for characterizing protein properties, particularly many high-
throughput assays, are often imperfect proxies of the desired functional trait and exhibit con-
siderable noise. For instance, a common first step in a protein engineering pipeline is a site-sat-
uration mutagenesis experiment, which in a single experiment characterizes the majority of
variants deviating by a single mutation from the wildtype protein. Apart from relatively high
levels of noise, these initial high-throughput experiments often have only limited correlation
to the functional trait of interest, and are therefore sometimes augmented with lower-through-
put, more costly assays in later stages of the optimization process. After an exploration of single
mutants, protocols will often proceed with variants with greater separation from the wildtype.
In these later stages, there will typically be considerable selection bias in the experimentally
probed sequences, as a result of new variants being selected based on results from previous
experiments. These effects have consequences for the performance we can expect from our
regression algorithms, and in the design of our split strategies, as we will see below.

In addition to the sequences with observed experimental values (i.e.labelled sequences),
there are typically many sequences available for similar proteins from the databases of natu-
rally occurring proteins. If the functional trait we are optimizing for is related to the biological
function of the protein, we can hope to gain additional information from these unlabelled
sequences, for instance by learning improved representations or by unsupervised predictions.

To ground our discussion on modelling choices in regressor design, we conduct an empiri-
cal evaluation on a representative set of protein variant effect data sets. The data sets were
selected to vary in data quantity, in how far the observed variants are from their closest wild-
type, and to be diverse respective to their biological organismal functions and structures. The
experimental data we consider are from mutational scans, which recorded growth under dif-
ferent stresses depending on the protein systems (see Table A in S1 File cf. [8, 14]) For each
synthesizeable candidate sequence we observe a measurement y € Y C R, as a label.

For our initial experiments, we will use two commonly employed train/validation split sce-
narios: a random cross validation (Random CV) strategy where the data is split at random
(uniformly), and a position-level cross validation (Position CV), where splits are made by posi-
tions in the chain (non-overlapping segments are assigned to either the training, validation or
test group). We will return to the choice of splitting procedures in our treatment of assessment
techniques later in the paper.

Protein representations

Advances in representation learning have shown that different approaches to unsupervised
learning from biological sequences lead to differently structured representations [8, 12, 13, 22,
26, 27]. A priori, it is not clear how such differences in structure will translate into downstream
performance. Therefore, the usefulness of a representation can only be assessed in terms of the
performance of a downstream prediction algorithm. For the particular protein systems
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investigated here, we show such an analysis in Fig 2A, comparing the ONE-HOT representation
to two recent large language model representations, ESM-18 [11, 28] and ProtT5 [26, 29], and
a family-specific representation extracted from the EVE variational autoencoder model [10].
We will return to the exact choice of metric and cross validation scheme later, and focus first
on the fact that regression performance is clearly heavily impacted by the choice of representa-
tion (Fig 2A, bottom). As suggested by the striking results reported for fitness prediction with
large language models and family-specific density models in the zero-shot (unsupervised) set-
ting [14, 26], we might expect increased performance when using the corresponding represen-
tations as input for supervised training. Indeed, we observe that representations are capable of
increasing regression performance beyond using the raw amino acid sequence. Although the
strength of this effect depends on the protein, choice of regressor, and cross validation scheme,
the representations extracted from language models seem to generally be a robust choice (Fig
2A). Interestingly, we note that this does not hold true for all choices of learned representa-
tions. In particular, we observe consistently that the latent space of a protein family-specific
variational autoencoder (here EVE) seems to underperform in downstream regression tasks.
This is somewhat surprising, since the evo-score, which is the evidence lower bound (i.e. a
proxy for the likelihood against the WT) extracted from the same model seems to fair better
on average, despite being a one-dimensional value. We find that the performance across PLM
models is consistently high. We expected more recent, larger language models to outperform
their earlier counterparts and indeed found a significant gain from PrROTBERT to PROTT5. Sur-
prisingly, this was not generally the case for ESM-18, ESM-1v, and ESM-2 (see Section 3.2 in
S1 File).

Some of the most striking differences in performance occur across the two different split-
ting strategies, an issue that we will revisit in detail later in the paper. The usefulness of the dif-
ferent representations also varies significantly between protein systems. This presumably
reflects the different nature of the assays. For instance, the cases where the evo-score is predic-
tive of the assay value are presumably those where the assay is a good proxy for the biological
function.

One final remark on the choice of representation relates to their dimensionality. The high
dimensional per-position embeddings produced by language models are not well suited for
direct input to a regression model. Often, the representations are aggregated over the length of
the protein by simple averaging. For simplicity, this is also the strategy employed here,
although we stress that better choices exist, and can have considerable impact on performance
[22]. Even when employing such an averaging strategy, one is left with a representation of
(often more than) hundreds of dimensions. For certain regression algorithms, like Gaussian
Processes using kernels based on Euclidean distance, such high dimensional spaces are known
to be challenging. For regressors for which the number of parameters scales with input size
(e.g. a simple linear regressor), large representations might also lead to concerns of overfitting.
In an ablation study we considered whether an unsupervised dimensionality-reduction pre-
processing of the averaged representations could have a positive effect on regression perfor-
mance, but generally found this to be detrimental (see Fig W in S1 File). However, we note
that several recent protein optimization studies have found it beneficial to include in their opti-
mization protocol a supervised dimensionality reduction step trained specifically on the task
[30, 31].

Regression algorithms

Choosing the right regression algorithm is often considered as the most critical of the model
design choices in the pipeline. System-specific protein regression typically operates within the
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low-data regime, which implies that particular care must be taken in the choice of model class
and model capacity to avoid overfitting to the noise in the data. In our case study, we select a
set of representative methods, that are expected to show reasonable performance in this
regime: (1) a kNN regressor, (2) a Random Forest (RF) with predictive ensemble uncertainties,
and (3) three Gaussian Process (GP) regressors (linear kernel, squared exponential kernel, and
Matérn? kernel—see details (parameters, and regressor optimization) in Methods). Each
regressor is implemented to provide not only a predicted value y,, but also a predictive vari-
ance estimate as an associated uncertainty 67 (see Methods).

When comparing the performance of these regressors across the five data sets we find the
GP regressors perform well despite the high dimensional input when hyperparameters are
optimized (Fig 2B). The fact that a GP with linear kernel in many cases provides a reasonable
performance suggests that much of the signal in this limited data regime can be captured with
a linear model, but this will depend on the system in question, the amount of available data,
and the learned representation. A more general observation is that the choice of hyperpara-
meters is at least as important as the choice of regressor; if chosen poorly, it can have a signifi-
cant detrimental impact on performance. Note that we focused here on regression
performance using a language model representation, but find similar effects with other choices
of representations. For details on both points, see Fig'V in S1 File.

As in the previous section, we again observe a dramatic decrease in performance when we
change splitting strategy from random sampling to position-level splitting (i.e. predicting in
sequence regions unseen during training). The size of this effect is system specific. In cases like
the TIM-BarreL, we have no predictive ability in the position-level split, although the random
split performance is on par with other systems. We will explore this dependency in detail
below.

Assessment: Metrics, tasks, domains, and generalization

Metrics. An elementary part for any learning algorithm assessment is a means to assess

predictive performance. To measure performance comparatively across data sets and systems
N o

oy Al 2 hich
NZ,- (i—ny)
indicates an improvement of our predictions j over the training-set mean as a baseline y, (see
Methods 3 for details).

Since the predictive uncertainties that the regressors provide are used actively in down-
stream applications (e.g. in the acquisition function of a Bayesian Optimization procedure), we

we use the adjusted ratio between residuals and total residuals.: R* = 1 —

should assess our methods also on the quality of their uncertainty estimates. We can use the
predictive uncertainties to assess calibration and confidence of a model [32-34]. The calibra-
tion implies that in expectation the average size of the prediction error should correspond to
the magnitude of the grouped predictive uncertainties [35]. A method would thus be over-con-
fident if the empirical error is larger than the uncertainties it predicts. We quantify this by

N2
computing a standardized (reduced) y* statistic: y*> = T Y (”;—y’) as the squared mean of
the residuals normalized by the predictive variance, which provides us with one estimate for
the regressor’s calibratedness. We also investigate calibration curves [32, 33] by discretizing

the predictions into q quantiles of the predictive variances 67 across all observations i € [1, n],
indexed by j € [1, ql, so that each 07 € [0, PISRRY 1] describes a Gaussian (0, 67). From this

we compute calibration, expected calibration error (ECE), and sharpness (see Methods 8 for
definitions).
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https://doi.org/10.1371/journal.pcbi.1012061.9g003

Plotting calibration assessments across regressors and representations (Fig 3) for our test
systems (Figs G-] in S1 File), we find the methods generally to be well calibrated. Exceptions, i.
e. overconfidence, occur if the regressor’s predictive variance is very low, as is the case for KNN
on PLMs or the RandomForest on ONE-HOT.

Domains and generalization. When we create a test set we implicitly define a notion of
generalization: we assume that the test set is as representative of the training set as we expect
any future application to be. The appropriate choice of test set will thus depend on the task we
intend to solve with the model subsequently.

To make the discussion more precise, we will briefly formalize the concepts of domain and
task. We define the domain as a finite set of embedded sequences X C R? with the distribution
p(X). A test set is said to be out-of-domain if there is a shift in distribution between inputs in
the training and test sets—sometimes referred to as covariate shift. A task involves a set of
observations Y C R, and is defined by the joint distribution p(Y, X). The joint distribution fac-
torizes as p(Y, X) = p(Y|X)p(X) under the usual assumptions (for related transfer-learning defi-
nitions see [36-38]). With this definition, a task can change either through a covariate shift, or
through a change in the likelihood p(Y]X), i.e. a change in the fundamental relationship
between X and Y—sometimes referred to as concept shift. Note that even without a concept
shift, a covariate shift will generally also lead to a shift in the output distribution p(Y).

We fit a supervised model on a sample from a domain with the intent to make predictions
related to a task, f(-) : RY — R. The sample of size # for the training of the supervised model
is denoted S|i; = {(X;, y)}iz1...- To assess the performance on the task, we construct a test set as
a representative subset of the task X C R, jC R, S|, = {(X 571) Yot n,, With distributions

p(X), p(Y|X), respectively. The generalization capabilities of the supervised model are

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1012061 May 3, 2024 8/22


https://doi.org/10.1371/journal.pcbi.1012061.g003
https://doi.org/10.1371/journal.pcbi.1012061

PLOS COMPUTATIONAL BIOLOGY A systematic analysis of regression models for protein engineering

kM
example: e
DMS ~(20L)
experiment
2M
WT ~(20L)?
™
~20L
task regime | naive imputation| extrapolation  imputation extrapolation  imputation
split strategies | positional positional positional
fractional random| fractional random| | fractional random
1M—2M (k-1)M—kM

Fig 4. Schematic data over domains of variants by number of mutations (1. . .kM) relative to sequence wildtype
(WT). Areas indicate observed variant samples (dark) against unexplored (light). Not all possible sequences can be
explored for DMS experiments, due to natural constraints. The fask-regime presents tasks applicable relative to the
domain and the split strategies are potentially suitable protocols to assess performance on the domain by constructing
training and test sets.

https://doi.org/10.1371/journal.pcbi.1012061.9004

assessed by residuals between the true observations and the predictions on the test data, as well
as the calibration of predictive uncertainties.

The concept of domain is important in a protein engineering setting, because there is an
inherent need for extrapolation. A typical engineering pipeline will gradually move further
away from one or more initial (WT) sequences by introducing an increasing number of muta-
tions. As an example of how these concepts can come into play, Fig 4 contains a schematic of
the available data in a typical protein engineering setting. The progression from left to right
illustrates an exploration of variant space, organized by the number of mutations away from
the wildtype (1M, 2M, ... ., kM). Within each block, the dark shade denotes an increasing per-
centage of cumulative variants explored. If we assume that the variants within each class are
sampled according to some distribution, we can consider each block as representing a domain,
for which we sample an increasing number of data points (left to right). The DMS arrow dem-
onstrates the typical scenario explored in (Fig 2) where a Deep Mutational Scan (DMS) experi-
ment provides us with a fairly complete set of single-variants. If we wish to predict missing
values within the 1M class (and assume that these values are missing at random), then our task
would be an imputation task. For this task, a random splitting strategy would be appropriate.
In contrast, if we wish to make predictions in the 2M class, having only observed variants from
the 1M class, we would be in an extrapolation setting, which is inherently a more difficult
modelling task. A test set constructed on the 1M data using random splitting will not give a
reliable estimate of our performance in this 2M prediction setting. The position-level splitter,
which tests the ability of the model to make predictions at one position given only information
at other positions, could serve as a more useful proxy for the performance on this task.

When observing experimental data for 2M and higher order variants, we often also face the
problem that the data we encounter are biased. While the initial round of obtained variants is
often sampled relatively uniformly (e.g. in a site saturation experiment), the subsequent dou-
ble- and higher-order variants are often selected based on the best performing variants
observed in earlier rounds (Fig 4, dark vs. light grey regions). Therefore, even if we define our
domain to be all variants up to a maximum mutation order k, the sample bias in the data
makes it difficult to reason about expected generalization. Another way of seeing this is that if
we define our domain as a uniform distribution of variants up to order k, a site-saturation
experiment of all 1M variants is a heavily biased sample.
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Assessing performance: Train/Test splits. In our experiments comparing representa-
tions and regressors (Fig 2A and 2B), we saw a clear tendency towards lower performance
when splitting by positions of a sequence compared to splits at random. We now discuss these
two splitting strategies, in addition to several alternatives, in the light of the discussion above.

Random CV. This random splitting protocol is a standard k-fold cross-validation proto-
col that shuffles training data uniformly at random, separates (X, y) into k folds, testing on
each after being trained on the remainder. When dealing with naturally occurring biological
sequences, random splitting is often considered inappropriate due to the evolutionary struc-
ture in the data, and homology reduction schemes are therefore used for testing to better
reflect how the model will generalize to sequences from species not included in the training
set. For protein engineering where data consists of artificially constructed sequences, we do
not have this concern, and there is therefore a priori no reason for disregarding random split-
ting. However, as argued above, it is appropriate only for imputing values that are missing at
random, and will generally produce overly optimistic estimates of our performance beyond
the imputation task.

Positional CV. This protocol partitions the sequence into segments of size p, such that we
create 1% number of splits. All variants with mutations that are in the range of positions in a seg-

ment are held-out for testing, while training is done on the remaining data. More specifically,
let a sequence X = {xo, .. ., X, . . ., Xz} of length L have a mutation at position k. The training set
is then composed of the sequences that do not have a mutation at the given position range:
Sler = {(Xi> ¥)}i=1. N.kfkg[jj+p) (With partition starting index j) and §]i is the complement of that
set. For computational feasibility, we consider positions in blocks of p = 15. This protocol
therefore allows us to test generalization beyond the sequence positions observed during train-
ing. Rather than relying on a site-specific signal (the equivalent of conservation in natural
sequences), the model must exploit pairwise or higher order signals. Since this assesses the
ability of the model to predict in the context of the other amino acid present in the sequence,
we might expect it to better reflect the performance we can expect in an extrapolation setting.
On the other hand, if variants effects in a data set are largely additive, the position level splitter
could provide an overly pessimistic view of our performance.

Mutational CV. This splitting strategy probes how well we generalize from a lower num-
ber of mutations to a higher number of mutations in the sequence. The protocol tests on a
sample of degree-k variants in the domain kM containing m variants,

Sl = {(X]WV[)7 y}km)}j:]”m, after having trained on variants of degree-k’ where kK’ <k,

Sl = {4}
ciated shift in p(Y]X) when switching domains, as discussed above. The usefulness of the Muta-
tional CV approach will thus depend on whether the variants predicted in expected
application of the model are distributed similarly as the successive mutation degrees observed
so far, i.e. if a similar selection protocol is used to select substitutions. Obviously, this splitting
strategy is only feasible if the available data contains multiple substitutions, which is not the
case for any of the data discussed so far. We will analyze such a case in detail below.

Fractional CV. We introduce this protocol to assess regressor performance as more data
becomes available—from a naive, few observation setting, to the nearly full-information,
imputation setting. The protocol is a k-fold CV protocol that sub-samples train and test data

from the total available sequences uniformly at random. We sample each fraction q € (0, 1]
j=1..k
]izlu(qu

. In addition to an inherent shift in p(X) there will often be an asso-

i=l.n

uniformly at random 8|, ~ {(X”, y?)} , with k train, test iterations. This splitting strat-
egy assesses the expected regressor performance when faced with different amounts of data
within the domain. It thus serves as a simple proxy of the performance we can expect in a

batch-1 optimization setting.
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Fig 5. Performance comparison across tasks. GPMatérn] regressor performance (R?) for the ESM-18 representation

of B-Lacramast and UBIQUITIN, when evaluated splitting at random (10-fold CV) (blue), by sequence positions (p = 15)
(red), across fractions of the data (green), and optimization (purple). Fractional and optimization results are relative to
available training data (four partitions each), with mean and std.err. reported respectively (from first partition (lowest

value) to all available data (last partition, high value).

https://doi.org/10.1371/journal.pcbi.1012061.9005

Optimization. Our final assessment strategy consists of an actual optimization protocol,
where we use a Bayesian optimization strategy to actively select samples based on previous
observations via the Expected Improvement [39] acquisition function. The protocol is similar
to the Fractional-CV splitter, but replaces the simplifying assumption of uniform sampling of
candidates (which is guaranteed to stay in-domain) with an active selection of candidates, thus
becoming biased toward higher performance. Note that we in this protocol still optimize only
considering the known data points, with the task to find the optimal value in as few iterations
as possible.

Case 1: In-domain optimization. We illustrate the Fractional-CV and Optimization split-
ter on the same datasets as before, comparing the performance in a single-mutation data set-
ting, with increasing levels of data completeness (Fig 5); presenting the results as aggregates
over quarters of the results (i.e. the performance across the first 25% of fractional splits and BO
observations up to all available splits). We see that the Fractional-CV split and Optimization
protocol give even more conservative assessments of the total performance (especially with
only few available observations) than the earlier assessment criteria. Among the selection of
regressors that we tested, the GPs again perform most reliably on this task, finding the optimal
candidate after fewest iterations (Fig S in S1 File). This might be explained by the fact that the
acquisition function of the optimization protocol relies actively on the uncertainty estimates
provided by the regressors. We also note that random selection and sorting by EVE-score are
competitive reference baselines (Figs S-T in S1 File).

In an ablation we investigate the parameters k and p for random and positional splitting
respectively (Section 8 in S1 File) showing that the test performance metric is comparatively
stable (Fig Q in S1 File). Note that in extreme cases (e.g. large p) resulting in fewer training
data (and subsequently the larger the test set), the expected error and the standard error are
likely to increase (Fig R in S1 File).

Case 2: Extrapolation. To illustrate some of the pitfalls that can occur when extrapolating
to different domains, we conduct an analysis on a DMS experiment on PARD-aNTITOXIN [40].
This data set contains variants with multiple mutations, and is an example of the bias scenario
introduced earlier, where covariate shifts lead to increasing shifts in the label distribution at
higher mutation degrees.

In our analysis, we will use the mutational CV strategy introduced above, with the goal of
estimating how well we can predict variants at increasing distance from the wild type. Fig 6
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Fig 6. Mutation-degree protocol on GP. (Matérn)) from first-degree (1M) to fourth-degree (4M) of PARD-ANTITOXIN represented by ESM-18. Functional observations
of PARD-ANTITOXIN are density curves in first row and first columns respectively. We assess rank correlation (spearman p) across in and out of domain (left test columns
1M to 4M). The reference is an additive benchmark baseline (dashed line), which is the addition for all variants constituting the target variants. The baseline for
second-degree variants: y(Varl,Var2) = y(Varl)+y(Var2), and for triple variants the set of all combinations of the constituents. We assess accuracy (MSE) across in-
domain and out of domain (right test columns 1M to 4M). The diagonal shows in-domain performance, such that we learn on sequences with less than or equal
number of mutations, with a standard 5-fold CV protocol (given equal number of mutations randomly selected 20%). The off-diagonal for each source data domain (y-
axis) shows what we predict in the next domain.

https://doi.org/10.1371/journal.pchi.1012061.g006

demonstrates the performance obtained when training regressor models using data up to (or
up to and including) the kth mutation degree, and testing on the kth. If we consider the mean
square error (MSE) scores (Fig 6) (see Eq 4), the results behave as expected: when predicting
on the 2M (or 3M) data, our performance increases if we include a randomly selected set of
2M (or 3M) variants in the training set as well. However, if we instead consider Spearman
rank correlation (see Eq 5) as our metric, we see more surprising behavior: in the 3M case, our
performance decreases if we include 3M samples in the training set. This inconsistent behavior
is caused by the fact that the label distribution p(Y) changes dramatically between the 1M, 2M,
3M and 4M settings. In the 1M case, we see a bimodal distribution between non-functional
and functional with the latter being dominant. In 2M, 3M and 4M cases this switches more
and more dramatically to the non-functional case, increasingly centering around a single
value. As we move from 2M to 4M, the MSE therefore increasingly reports on the residuals
around an almost constant prediction (in this dataset, none of the 4M mutations are func-
tional). Since the empirical variance of the distributions drops, so do these residuals, giving a
misleading impression of improved performance. Note that in this discussion we used MSE
rather than R? to keep the discussion simple, since we for the R* would see shifts both in the
numerator and the denominator (i.e., the performance of the reference mean predictor also
changes). See Fig M in S1 File for the equivalent R” plot.

In the Spearman correlation results we include as baseline the results from an additive
model (dashed line), such that an observation of a double variant is predicted by the sum of
the observations of its constituents. This simple procedure is often used in practice in engi-
neering pipelines, in particular when optimizing for stability, where a sum of independent site
contributions can be a reasonable approximation. We see that for this example, the additive
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Fig 7. The performance of a protein system with multiple mutations (0 to 21) collected iteratively. The true values are plotted vs. the predicted values in a
regression setting (left) and vs. time. It is critical to consider the number of mutations over time to properly model the system. The presented correlation in the
regression setting is largely due to the selection bias from adding mutations over time, given the previous iterations.

https://doi.org/10.1371/journal.pcbi.1012061.g007

model is in many cases a reasonable baseline for ranking candidates, although the additive val-
ues do not constitute competitive predictions in terms of MSE (Fig N in S1 File). Since ranking
candidates is often a primary concern, this illustrates the importance of including such site-
independent baselines when assessing regressor performance in the multi-variant setting.

Case 3: Iterative data acquisition. In a protein engineering campaign, experiments are
often conducted iteratively. In this scenario, the selection of variants in a given iteration can
depend on outcomes in previous iterations, over time leading to a gradual covariate shift. In
the following, we show that this can have important consequences for the training and assess-
ment of regression performance. We will illustrate this point on an in-house dataset. Although
the identity of the protein system under study cannot be disclosed at this time, the case pro-
vides an interesting real-world example of the consequences of an ill-informed regression anal-
ysis. Fig 7 shows that a random split approach on the entire dataset gives rise to a correlation
of 0.94 with experiment (using a Random Forest regressor with an ESM-2 embedding). A
closer inspection reveals that the number of mutations in a variant is highly predictive of its fit-
ness value: the further we are from the wild type the higher fitness we obtain. Clearly, this is
not a meaningful signal in the data: we do not expect higher order variants to generally have
higher fitness value. The effect is caused by the iterative data acquisition strategy, where new
variants are selected based on top-performing variants in the previous round—leading to
improved variants over time. Due to a poor choice of splitting strategy, we have allowed our
regressor to fit the selection bias in the data rather than the signal of interest. In this case, the
proper splitting strategy is a chronological split in a typical forecaster scenario, where we train
on the past and predict on the future. For this particular dataset, this decreased the obtained
Spearman correlation from 0.94 to 0.19. Note that this is an extreme example of the sample
bias issues discussed previously, where we see dramatic shifts in both p(X) and p(Y).
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Case 4: Free optimization. So far, we have considered our test set as a perfect representa-
tion of a downstream task: our assessment measures how well we will do if the data in a down-
stream task is distributed identically to our test set. In reality, however, in a protein
engineering pipeline, we conduct free (i.e.not bound to a predefined list of candidates) optimi-
zation where we propose candidates, and evaluate our regression algorithm on these proposals.
It is therefore our responsibility to choose proposals such that they do not deviate too much
from the domain on which our regressor has been trained and validated. We can address this
in various ways, either: 1) ensuring that the procedure used to select new candidates is
restricted to points close to the training set, 2) assessing the proximity to the training domain
by modelling the input distribution directly (i.e. with a density model p(X)), or 3) employing a
regression model which will associate out-of-domain predictions with high degrees of uncer-
tainty. Since the topic of our paper is regression, we will focus on the last point here, but note
that examples of the first two options exist in recent protein optimization methods, where lists
of candidates are generated to be close to wild type proteins, for instance using a generative
model of p(X) [30, 31].

The question is thus if the uncertainties predicted by our regression algorithms are accurate
enough to distinguish between useful and useless predictions. We saw that within the 1M
domain, our different regression methods were all reasonably well calibrated (Fig 3), but since
we only had access to 1M data, that analysis did not probe the out-of-distribution behavior. As
a simple sanity check, we would expect that the uncertainties produced by our selection of
regressors generally increases as we predict on sequences at larger distances from the wildtype.
Unfortunately, we observe that this is only partially the case (Fig U'in S1 File), as most of the
methods produce constant uncertainty values at increasing distances. We had expected the
GPs to shine in this area, but found that only the linear GP had a relative increase in predictive
variance with respect to added mutations. Furthermore, the predicted variance values differ in
orders of magnitude depending on the type of regressor and underlying representation. This
observation is partially explained by a property of polynomial kernel functions (such as the lin-
ear kernel): the prior variance grows with the norm of the input [41 p. 90] which is not the
case for stationary kernel functions (such as squared exponential and Matérn)).

The ParD-anTiToxIN data allows us to investigate this effect in greater detail on real data.
Here, we observe better calibration with more data (Fig P in S1 File), with generally a larger
deviation from a perfect calibration compared to the previous assessment from data such as -
Lacramasg, UBIQUITIN, etc. (Fig O in S1 File). However, the Gaussian Process models seem to
most robustly quantify this effect for the multi-variant PARD-ANTITOXIN observations; such that
they are better calibrated in this extrapolation setting.

An important consideration when discussing uncertainty quantification in protein optimi-
zation is that regression arises in two different contexts: 1) as surrogate models, for instance
internally in a Bayesian Optimization protocol, and 2) as oracles, which sometimes serve as the
objective of optimization when experiments cannot be conducted, frequently used for method
development of improved optimization schemes. Uncertainty plays different roles in these two
settings. In the surrogate model setting, the uncertainty of predictions can reflect both episte-
mic (model) uncertainty and aleatoric (data) uncertainty. Our focus in Bayesian optimization
is the epistemic uncertainty, which we wish to reduce by making additional observations. In
contrast, in the oracle setting, the regressor is fixed during optimization, and serves as artificial,
(in silico) experimental data. The uncertainty of a prediction made by the oracle should there-
fore be considered an aleatoric uncertainty, because it is irreducible once the oracle is trained.
In the Bayesian optimization setting, we expect evaluations of the surrogate function regressor
exactly in regions where the uncertainty is high (depending on the acquisition function), while
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in an oracle setting, it is appropriate to focus on regions where the regressor produces predic-
tions with low uncertainty. A similar situation could arise in a real experimental setting if the
experimental setup is known to provide very noisy outcomes in certain parts of the domain. In
such cases, it would make sense in a Bayesian optimization protocol to incorporate the alea-
toric uncertainty into the objective and acquisition function.

When using a regression algorithm as an oracle, an additional step of assessment is neces-
sary to assess the candidates found during optimization, since we have no guarantees about
the quality of an oracle evaluation. In particular, if the oracle was trained only on a limited
size, system-specific dataset, we should be concerned that the optimization procedure has opti-
mized for an extrapolation artefact of the oracle, rather than a signal from the data. In general,
the free optimization setting implies that we have no data for the candidate sequence selected,
so standard train/test splitting is not applicable. Ideally, experiments should be conducted at
this stage to validate the candidates. However, in computational labs such experiments might
not be accessible, which has led research towards finding computational proxies. One
approach that has been suggested is to train two oracles on subsets of the data, optimize against
one, and validate against the other—averaging over both permutations [31]. Ideally, the model
assumptions should be different between the two oracles, to ensure that extrapolation artefacts
are different between them. This approach to quantify the epistemic uncertainty of the oracle
is similar to those built into the GP and RF regressors, but incorporates uncertainty about the
model class as well, and could therefore provide more useful uncertainty quantification in the
extrapolation setting.

Discussion

In this study, we have identified the impact of some central components in a protein regression
protocol: the data, the representations chosen to encode the data, the choice of model, and the
assessment criteria. Our results confirm that some choices of representation can have positive
impact on downstream regression performance, in particular those of large language models.
The choice of regression algorithm itself seems to be less critical for performance, at least in
the data-limited regime that we study here, and under the assumption that hyper-parameters
of these models have been carefully tuned. This choice might therefore be guided by other con-
siderations, such as whether the model can provide meaningful uncertainty estimates. In our
experiments, Gaussian Process regression turned out to be particularly well suited for this task,
although this is by no means the only option.

Of all the components in a regression protocol, assessment is perhaps the most critical. We
demonstrate that performance can change dramatically depending on how data is split into
train/validation/test sets. While this result is perhaps unsurprising, it warrants our attention,
since performance values are routinely reported when new methods are published. If splits are
not defined in the same way, comparing methods is meaningless. Equally important, if splits
are defined too simplistically, we risk overestimating our abilities. A choice of splitting strategy
implies an expected downstream task for which we are interested in quantifying expected per-
formance. We give several examples of splitting strategies that attempt to reflect the regression
scenario faced in a protein engineering protocol. The choice of assessment strategy is, however,
complicated by selection bias in the data, and the inherent drive towards extrapolation when
conducting protein engineering. We argue that for this reason, it is essential that we have the
ability to associate predictions with reliable uncertainty estimates, and that we should evaluate
regression methods on their ability to produce calibrated uncertainties.

Although we have stressed the importance of reliable uncertainty estimates in our analysis,
the methods we considered were often lacking—especially when applied in an extrapolation
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setting. For Gaussian Process regression, this might be due to the high dimensionality of the
inputs, and interesting future work could be to investigate whether lower dimensional approx-
imations to learned embeddings might behave better in this setting. An alternative technique
for uncertainty quantification worth exploring is conformal prediction. In particular, recent
work in this area presents a solution to the bias that arises during optimization when iteratively
adding proposals from a regressor to the available training data by an acquisition function
[42].

Our previous discussion of domains and generalization indicate that it might not be fruitful
to think about domains in terms of raw amino acid sequences and the number of mutations
that a sequence is separated from the WT. If a method generalizes from 2M to 3M variants, it
is presumably because it relies on features of the raw input that occur in both the 2M and 3M
dataset, e.g. specific sequence patterns, charge distribution, or a combination of amino acids
forming a stabilizing bond. Such features can easily be preserved between sequences deviating
by tens of mutations. In a limited data regime, it can be difficult to reliably learn biochemically
relevant features from the available data. Embeddings from pre-trained language models pro-
vide a potential shortcut for extracting such features, which explains why using them as input
to a regression algorithm might improve performance. It is likely that these pre-learned repre-
sentations also provide a richer notion of locality than that provided by raw input space. By
making local perturbations in the representation of a protein, and decoding back to input
space, one can hope to generate variants that are functionally or structurally close, but poten-
tially more divergent in sequence space. This strategy has been employed by recent protein
engineering pipelines [30]. A similar approach might prove useful in the future as a more
robust basis for the definition of splits.

Given the large differences in performance arising from different split strategies and task
definitions, we encourage the community to work towards standardized benchmarks that
include splits of data that are well-motivated by specific biological tasks, including the extrapo-
lative setting. Encouragingly, recent contributions seem to be moving in this direction. Apart
from a standard cross-validation approach [19, 21, 23, 27, 43-45], previous work includes dif-
terent hold-outs [11], homology splitting [13], mutational or blocks of positions splitting [24,
46,47], and task-inspired splitting [24, 25, 47]. We stress that such benchmarks should include
meaningful baselines (such as the additive model described above), and also rank models both
by their ability to quantify prediction performance and uncertainty quantification. This will
ensure that we can meaningfully compare performance of regression models, and provide
practitioners with a realistic expectation of the performance of the state-of-the-art.

Methods
Computing representations

Seven distinct proteins were extracted from the ProteinGym data-set [14, 47].
The individual data are published in the following references: S-LacTaMAskt [48], UBIQUITIN
[49], CaLmopuLN [50], TIM-BARreL [51], BRCA1 [52], T2-MTH [53], PARD-ANTITOXIN [40].
The representations are obtained by different means: EVE is constructed from a single pro-
tein family multiple sequence alignment per protein (the UNLABELLED sequences in
Table 1), for which we compute the latent space via the encoder of the EVE model [10] (see
github.com/OATML-Markslab/EVE). We include the log-likelihood (ELBO) of the model,
which has proven highly informative in an unsupervised setting (referred to as evo-score
(d =1)). To compute language models such as PRoTBERT, PrOTTS5, [26] and ESM-18, ESM-1v,
ESM-2 [11, 28] representations, we reduce the high dimensionality of the language model by
taking the mean over the sequence positions from the last attention layer of the transformer
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Table 1. Overview of the datasets.

DATASET REF. UNLABELLED LABELLED N LENGTH L
B-LACTAMASE [48] 13191 4788 263
UBIQUITIN [49] 34281 1255 76
CALMODULIN [50] 37953 1729 149
TIM-BARREL [51] 25264 1519 252
BRCA1 [52] 9575 1184 237
T2-MTH [53] 28232 1719 330
PARD-ANTITOXIN [40] 14672 9193 93

https://doi.org/10.1371/journal.pcbi.1012061.t001

model as our representation (as is frequently done in practice). We compare these learned rep-
resentations with a simple oNE-HOT encoding of the raw input sequence.

Optimizing regressors
We make the fairly common choice to standardize the observations in the training sample as

y= yt;—(';y), where y, and std(y) are the mean and standard deviation.

As regressors we fit:

1. a kNN regressor [54], as an example of a non-parametric, deterministic baseline, for which
we optimize the number of neighbors [55],

2. a Random Forest (RF) as an example of a parametric, ensemble-based regressor [56], we
implement the sklearn-implementation [55], which we extend with a predictive uncertainty
estimate as 6> = j* — j2,

3. a Gaussian Process (GP) regressor with: a linear kernel (equivalent to standard linear Bayes-

ian regression [57]): k,(x, ') = S5, 0%x,x,

4. a GP with a non-linear squared-exponential: kg (x, x') = o exp (— (X;;/)2> ,

312 1

5. a GP with a Matérn-52 kernel: k;(x, x') = o (1 + M + M) exp (— M) :

We compute exact GP regression [41] (using GPFlow [58]) we use a zero-mean prior
f(x) ~ GP(0, k(x,x')). We assume Gaussian noise for each experimental observation, such
that

¥y =f(x,) + €€~ N(0,07T). (1)

The standardized observations do not affect RF or kNN predictions, and allows us to use a
zero-mean prior for our GP models.

Given the GP setting, we can compute the marginal likelihood [41] for our training input X
of size n, as

_ 1 1 n
POIX.0) == 27" K+ 071) 'y = log [Kyy + 021] — 5 log(2m). (2)

The hyperparameters of the GP covariance functions were chosen as 0 = {07, 1, 6} (the
linear kernel parameters 6, := 6\{l}), such that 6> ~ T""'(3,3),] ~ I'"'(3,3), 6> ~ U[0.01, 1.0]
are loosely constrained. Given the standardized observation this is the least imposing prior
that results in a more robust optimization, as it punishes unlikely extreme values for length-

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1012061 May 3, 2024 17/22


https://doi.org/10.1371/journal.pcbi.1012061.t001
https://doi.org/10.1371/journal.pcbi.1012061

PLOS COMPUTATIONAL BIOLOGY A systematic analysis of regression models for protein engineering

scale and variance. For each model the log-marginal likelihood is optimized using an L-BFGS
optimizer (max = 500 iterations) [59].

We use skopt (scikit-optimize/stable) Bayesian optimization routine with an internal three-
fold cross-validation, minimizing the negative mean absolute error (NMAE) to find the num-
ber of neighbors for the kNN regressor and number of estimators for the Random Forest [55].
The kNN regressor has k € [1,0.95%]] with an optimization budget of 75 using gradient
boosted trees as internal surrogates (GBT). In the unoptimized setting we set number of neigh-
bors k = [1N. For the Random Forest regressor the number of estimators is €[2, N] with a
budget of 15 (using GBT). The delta against Random Forest default parameters, and KNN
fixed neighbors is in an ablation (see Fig V in S1 File).

Protocols

The presented results for the RandomCV are obtained with a 10-fold cross-validation scheme
(as implemented in [55]) unless specifically indicated otherwise. The PositionCV partitions
the sequence data by positions. The fractional CV sub-samples the data available by the indi-
cated fraction. For each fraction we compute a 5-fold CV, to obtain error estimates for each.
More details with individual sizes of samples can be found in the Tables B and C in S1 File.

Performance metrics and calibration

We compute the accuracy by an adjusted R2 score:

s
I%]Zj\’ ()’i - :uy)2

When not normalizing by training signal we resort to the elementary error metric as mean
squared residuals:

R2 3)

MSE = %Xi]:(yl _)A’i)Z- (4)

To compute correlations we use the Spearman rank correlation (based on the ranks r of the
inputs):

_cov(r(y)r(y))
p=—""20 (5)
1) Ox(5)
We compute calibration (goodness of fit) as a reduced 1 statistic:

i 1

For details see SI Section 6. An implementation of the 4 statistic can be found in the evalu-
ation metrics in the ProbNum package [60]. As further uncertainty quantification assessments
we compute confidence curves, as:

£00) =75 D M58, < B @

j=1 i=1
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The absolute deviation from calibration (ECE) and sharpness is:

1< .
ece cal) :azmﬂ_J‘7 (8)
j=1

_sid(6? )

T 9)
; Zi 7

sharp(6? )

.n

Bayesian optimization and the unsupervised baseline

We use the previously described regressors as surrogate functions and compute the expected
improvement (EI) [61] as acquisition function, for the list of available labelled candidates
from the dataset. The budget is 500 iterations, the regressor is optimized with the previously
specified hyperparameters at each iteration. Ten different random seeds have been run for
initial ordering of the available sequences. As reference baselines the EVE model evo-score
was used to rank the available sequences (optimization results can be found in Fig S in S1
File).

Supporting information

S1 File. Supplementary material. Contains dataset overview, additional results, calibration
definitions, protocol descriptions.
(PDF)
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