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Introduction

Due to its rich reserves and potential for effective application, shale oil has been targeted
for unconventional oil and gas exploration (Salygin et al., 2019; Podoba and Lavrova, 2021).
The main technologies for developing low permeability unconventional reservoirs are multi-
fractured horizontal well (MFHW) and stimulated reservoir volume (SRV) fracturing
stimulation since they improve low permeability reservoir conductivity for effective
production and high recovery. The estimated amount of technically recoverable
continental shale oil resources in China was about 60 × 108t by prediction (Zou et al.,
2013). However, it is challenging to evaluate the production of shale because of the
heterogeneity of reservoir, complex fracture network produced by hydraulic fracturing,
and the strong non-linearity of low permeability shale oil flow (Yao et al., 2020).

To match actual performance, we need enough production data for historical matching
and choose an appropriate prediction model. Once those geologic parameters, fracture
parameters and fluid properties of the share reservoir are obtained from prediction model,
we can predict the production decline trend and assess the effectiveness of the completion
and stimulation design. In the following section, this paper discussed the physics of fluid
storage and flow in shale, and then summarized the current popular production prediction
models and techniques for MFHW and SRV in the shale reservoir. Eventually, we point out
the problems existing productivity prediction model of horizontal well and emphasize the
future research work. It is expected to provide methods and technical reference for the
effective development of shale oil and gas resources in the future.

Physics of fluid storage and transport

The complexity of fluid phase behavior, the fluid flow mechanisms in shale matrix and
the fracture geometry can make shale reservoir modeling and production forecast difficult.
Compared with conventional reservoirs, shale oil has completely different rock and fluid
properties, primarily reflected in: (1) Nanopore system becoming main storage space of shale
oil; (2) complex chemical composition, containing abundant organic matters and different
proportions of inorganic minerals; (3) The internal flowmechanism of shale reservoir. In the
study of phase behavior of shale oil, previous studies have discovered the interfacial tension,
contact angle, critical temperature, and pressure of fluids contained in shale nanopores are
significantly different from those of bulk fluids. (Luo et al., 2016; Sobecki et al., 2019). Teklu
et al. (2014) considered changes in the fluid’s critical temperature and pressure in nanopores,
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results suggesting that fluid’s bubble point pressure, tension between
gas and oil, and minimum miscibility pressure all decreased as the
pore gets smaller, while the upper dew point pressure rised and the
lower dew point pressure fell. As for multi-scale fluid transport
mechanisms, researchers have extensively studied different oil and
gas flow regimes in shale matrices. Chen et al. (2015) used the lattice
Boltzmann method to calculated apparent permeability considering
Knudsen diffusion, slip flow. Due to fluid-solid interactions, shale oil
flow behavior in nanoporous media is more complicated than gas
transport. Yang et al. (2019) proposed a new pore network model to
represent shale oil flow in nanoporous media considering
microscopic fluid slippage and adsorption on pore surfaces by
scaling up shale oil flow from single nanotubes to the pore scale.
As to analysis anomalous transport in fracture system, the fractal
theory and the fractional derivative method were applied (Cossio
et al., 2013; Ozcan et al., 2014;Wang et al., 2015; Albinali and Ozkan,
2016). These works are helpful to account for the effect of reservoir
heterogeneities on flow behavior and complex fracture geometries
and pores in unconventional reservoirs.

Production forecast techniques of
MFHW

Mechanism modeling methods

The analytical and semi-analytical method is applied for analysis
of pressure transient and rate transient behaviors. Analytical
methods are usually based on certain assumptions, such as
assuming that the formation is homogeneous and the fluid
follows single-phase flow. The widely used analytical model for
MFHW is the linear flow model, which integrates the geometry of
the hydraulic fractures with the diffusion in the matrix and the
natural fractures to create an analogous homogenous reservoir.
Cinco-Ley and Samaniego-V (1981) first proposed the idea of
treating the stimulated reservoir as a combination of different
flow zones. They developed a bi-linear analytical model where
the flow region was divided into by the fluid flowed from the
matrix into the fracture and then into the wellbore. The tri-linear
flow model (Ozkan et al., 2009; Brown et al., 2011) was the classic
linear model to analyze production performance of MFHW, which
was extended to multi regions considering more detail outer
boundaries and simulate more complex flows (Yuan et al., 2015;
Ji et al., 2017). Recently, to describe the flow behavior of reservoir
beyond the fracture tip, (Yao et al., 2020), has proposed a composite
model combining multi-linear model and radial flow model, where
reservoir was divided into multiple subsystems, each of which is
subdivided into zones, and the flow within each zone can be linear,
radial, or continuous source/sink flow. Semi-analytical method can
be utilized to accurately account for the effects of reservoir
heterogeneity and different types of boundaries on productivity
when predicting the productivity of MFHW traversed by two or
three dimensional hydraulic fractures at any arbitrary angle. (Yao
et al., 2012, 2015; Zhou et al., 2014). Yu et al. (2016) studied the effect
of non-planar hydraulic-fracture geometry on shale production.
Sheng et al. (2019) proposed a semi-analytical model of fractal
diffusion to describe the distribution of induced fractures around the
main hydraulic fracture. These analytical and semi-analytical

solutions aim to continuously represent flow regimes (simple
linear flow or radial flow), but they simplify the geometry of the
complex fracture network and are only applied for the single-phase
problems.

Compared with analytical methods, numerical simulation
method may perform better in multiphase seepage. This method
uses the discrete grid to simulate the complex fracture morphology
and can reflect the flow characteristics of the fluid in shale reservoir.
The frequently used models for numerical simulation are discrete
fracture network model (DFN) and embedded discrete fracture
network model (EDFN). The DFN is based on the unstructured
mesh and divides the fractures finely. Compared with the
continuous representation, the discrete fracture model can
simulate large-scale complex fractures (Meyer and Bazan, 2011).
Due to the complex fracture network morphology, many scholars
have developed DFMs with different numerical methods to simulate
multiphase flow (Hoteit and Firoozabadi, 2006; Xu S. et al., 2017).
Xu Y. et al. (2017) and AlTwaijri et al. (2018) used DFN to study the
effect of fracture geometry on productivity. To solve the problem of
low computational efficiency of DFN, Li and Lee (2008) proposed
the EDFN, which uses a structured matrix grid, and then the
fractures are embedded in the matrix grid as an additional grid
to support the processing of small scale fractures to large scale
fractures. Though numerical simulation modeling has the advantage
of handling more complicated fracture network morphologies and
better representing the heterogeneous of shale reservoir, it is
complex and requires huge reservoir data sets, i.e., hard and soft
data (Mohaghegh, 2013). Moreover, these numerical modeling
researches have not been properly considered the complex pore
space structure, which has a great impact on fluid flow.

Data-driven modeling methods

The empirical method is a traditional data-driven analysis
method, which applied different decline equations for curve-
fitting production data. The early empirical method is Arps’
decline curve methodology (Arps, 1945), which gave the time-
yield equations of exponential, hyperbolic and harmonic decline
curves. However, it only matches the history of boundary dominant
flow (Fetkovich, 1980). Consequently, various authors have
proposed enhanced prediction models to account for transient
flow, such as Duong’s decline model (Duong, 2010), Logistic
growth model (Clark et al., 2011), and their composite models
(Yu, 2013) etc. All of them are mainly reflected in the derivation of
the form of decreasing equation and solution method of the
coefficient. Yuan et al. (2017) used a new iterative algorithm for
integrated evaluation, prediction and optimization of production in
shale reservoir, which improved the existing production data
analysis workflow (Clarkson, 2013). To reconcile different types
of empirical decline methods, Yu et al. (2018) developed a workflow
and it successfully applied it to many shale fields. Empirical method
is full of simplicity and usability, allowing quick estimation in a short
time, but it cannot accurately describe fluid flow patterns, hydraulic
fractures due to their reliant on empirical observations of a
particular scenario.

Machine learning (ML) method uses data relationships with
strong learning and estimate algorithms to increase the accuracy of
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production forecasts. Bayesian algorithm, neural network algorithm
(NNA), random forest algorithm (RFA) and support vector machine
(SVM) are commonly used to predict productivity. Luo et al. (2019)
used RFA and NNA to predict 6 months of oil production for the
Ford Shale, whose result helped understand the impact of
completion design and geological variables on Eagle Ford well
production. Lee and Mallick (2021) proposed a Bayesian
hierarchical model that leverages shale well data to estimate
production decline curves at the individual well and reservoir
level. Using the historical data of oil well production, Machado
et al. (2020) compared and analyzed the fitting effects of ML
algorithms, suggesting ML was effective and required less
computational effort compared with conventional methods above.
As an important data-driven method, ML avoids explicitly explain
the physics of the storage and transport in shale the data
characteristics and invests heavily on what we know and measure
in the field, making more well models more reliable and more
robust. However, data-driven modeling is not applicable to an asset
with small number of wells. Data-driven modeling of the production
from shale reservoir appears to be the most logical solution until
more understanding from experiments can be scaled up and
incorporated into our previous models. Table 1 summarizes the
key features of aforementioned modeling methods.

Challenges of productivity forcast and
future development

The existing productivity prediction theories and methods
produced cannot match the expectations for stimulating shale
reservoirs to improve production because of the complex fluid
phase behavior, fluid flow mechanisms in shale matrix, and

complex fracture network. In view of the challenges existing in
current productivity prediction should focus on the following
aspects:

(1) Theoretically, the fluid phase behavior in shale matrix needs
further study. There are lack of full understanding about the
main controlling factors for the change of critical parameters of
alkanes, accuracy of capillary force estimation and reliability of
phase state prediction, and the adsorption characteristics of
alkanes (Zhang et al., 2017; Wang X. et al., 2018; Wu et al., 2019;
Lu et al., 2022). As to fluid flow mechanisms through shale
multiscale pore networks, it is necessary to develop better
mathematical models for characterizing transport properties,
because most prior research primarily concentrated on the
transport processes of single-phase flow and few studied the
behavior of multiphase flow.

(2) In production simulation, the structural descriptions of volume-
fracturing-induced fracture network, key theories and
characterization methods for complex fracture networks is
necessary (Ren et al., 2016; Wang W. et al., 2018). It is
required a compositional model accounting for characteristics
of shale oil, including phase behavior, non-linear flow and stress
sensitivity of shale matrix and fracture, especitally, establishing a
multi-field coupling mechanism and studying multi-phase flow
dynamics (Cui et al., 2018; Praditia et al., 2018; Shahamat and
Clarkson, 2018). The process of fluid absorption in shale oil
reservoirs, the mechanism and influencing variables of
fracturing fluid absorption, and the damage and control of
fracturing fluid filtrate to shale reservoirs need be investigated.

(3) It is of necessity to develop key technologies production with
optimal and rapid drilling and completion of long horizontal
wells and large-scale volume fracturing. Additionally, intelligent

TABLE 1 Comparisons of the different production forecast methods of MFHW.

Modeling
methods

Classification Synopsis Pros and cons

Mechanism modeling
methods

Analytical and semi-
analytical method

It is useful for analysis of pressure transient and rate
transient behaviors. The fluid flow is usually assumed a
linear flow or radial flow. Important factors on productivity
are permeability, porosity, fractal dimensions of fractures
and threshold pressure gradient.

Considering the physics of fluid with higher
computational efficiency; simplified assumptions on
physical models and only solving the single-well and
single-phase problems

Numerical simulation
method

It uses the discrete grid to simulate the complex fracture
morphology and can reflect the flow characteristics of the
fluid. Compared with continuummodel, the DFNmethod is
more accurate in capturing complex fracture systems,
because it clearly defines the location, occurrence, geometric
shape, size, width, porosity, and permeability. But it is
computationally expensive.

Handling more complex fracture network configurations
flexibly and considering multi-well and multi-phase flow
problem; requiring huge reservoir data sets as input and
requiring more time and expertise to model

Data-driven
modeling methods

Empirical method It often uses an improved Arps decline curve to estimate
single-well production, thus making the predicted
productivity of SRV-fractured wells with complex fracture
networks quite different from the actual value.

Full of simplicity and usability based on empirical
equations; rely on empirical observations

Machine learning method By a large amount of historical data training, MLmodels can
quickly predict the recovery rate based on the field
construction parameters and micro-seismic information.
Through the interaction environment between construction
and simulation system, learn the strategy under various
cracking parameters, and finally realize the dynamic control
of cracking parameters.

Using strong learning and estimate algorithms to increase
the accuracy of production forecasts, avoids
understanding the physics of hydraulically fractured shale
formations, making more well models more reliable and
more robust
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fracturing control technologies should be investigated further.
New technologies big data, cloud computing, and machine
learning should be comprehensively applied to establish the
relationship between fracturing parameters and well production
and optimize fracturing parameter design to boost MFHW
production.

Summary

The physics of fluid storage and the flow in shale is discussed and
main methodologies of shale oil production forecasting are
summarized, including mechanism modeling methods and data-
driven methods. Although there are many production forecasting
methods, modeling fluid flows in complex fracture networks in shale
reservoirs is still difficult since fundamental theories and
characterization methods for complex fracture networks, especially
the physics of fluid storage and flow in shale reservoirs have not yet
been fully understood. In the future, searching in characterizing
complex fracture networks methods, establishing a multi-field
coupling mechanism and studying multi-phase flow dynamics and
developing Intelligent fracturing control technologies are required for
shale reservoir modeling to achieve effective production of shale oil.
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