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Abstract

Major depressive disorder (MDD), a prevalent mental health issue, affects more than 8% of

the US population, and almost 17% in the young group of 18–25 years old. Since Covid-19,

its prevalence has become even more significant. However, the remission (being free of

depression) rates of first-line antidepressant treatments on MDD are only about 30%. To

improve treatment outcomes, researchers have built various predictive models for treatment

responses and yet none of them have been adopted in clinical use. One reason is that most

predictive models are based on data from subjective questionnaires, which are less reliable.

Neuroimaging data are promising objective prognostic factors, but they are expensive to

obtain and hence predictive models using neuroimaging data are limited and such studies

were usually in small scale (N<100). In this paper, we proposed an advanced machine

learning (ML) pipeline for small training dataset with large number of features. We imple-

mented multiple imputation for missing data and repeated K-fold cross validation (CV) to

robustly estimate predictive performances. Different feature selection methods and stacking

methods using 6 general ML models including random forest, gradient boosting decision

tree, XGBoost, penalized logistic regression, support vector machine (SVM), and neural

network were examined to evaluate the model performances. All predictive models were

compared using model performance metrics such as accuracy, balanced accuracy, area

under ROC curve (AUC), sensitivity and specificity. Our proposed ML pipeline was applied

to a training dataset and obtained an accuracy and AUC above 0.80. But such high perfor-

mance failed while applying our ML pipeline using an external validation dataset from the

EMBARC study which is a multi-center study. We further examined the possible reasons

especially the site heterogeneity issue.
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Introduction

Major depressive disorder (MDD) is diagnosed when an individual experiences five of nine

symptoms (either low / depressed mood or anhedonia, and four of the following: feelings of

guilt / worthlessness, lack of energy, poor concentration, appetite changes, psychomotor

retardation or agitation, sleep disturbances, or suicidal thoughts; American Psychiatric Asso-

ciation, 2013 [1]). It is an extremely common and devastating disease in terms of suffering,

mortality and cost to society [2–5]. The challenge of MDD is also growing. Since Covid-19,

mental health issues, including major depressive disorder (MDD), have skyrocketed, with a

nearly 25% increase in prevalence of anxiety and depression worldwide [6]. MDD is a het-

erogeneous disorder, with a range of symptoms including cognitive and psychosocial-affec-

tive symptoms [7] arising from numerous potential factors: genetic, epigenetic,

hypothalamic-pituitary-adrenal (HPA) axis and neurotransmitters [8]. In fact, due to the

diagnostic criteria (existence of five of nine symptoms), there are hundreds of ways to meet

MDD criteria [9]. This variability in symptoms and etiology likely impacts treatment

response, resulting in treatment response heterogeneity [10, 11]. Most patients with MDD

do not adequately respond to first line treatment and a large percentage fail multiple inter-

ventions [4, 12]. As conventional first line medication treatments require six to eight weeks

for full efficacy [12, 13], prediction of antidepressant treatment outcome prior to starting the

treatment could prevent ineffective treatment trials and help clinicians to prescribe antide-

pressant drugs in a more personalized way.

With the hypothesis that integrated multimodal data such as genetic, clinical and demo-

graphic data could enable accurate prediction of MDD remission, previous studies combined

various clinical, demographic variables and genetic information to predict treatment response

using machine learning (ML) methods such as elastic net, random forests, and gradient boost-

ing. Several studies trained their predictive models using the Sequenced Treatment Alterna-

tives to Relieve Depression (STAR*D) dataset, which contained patients’ sociodemographic

data, clinical information and a long survey, the psychiatric diagnostic symptom question-

naire, and tested their final models using an external dataset [14–16].

However, none of these predicting models has been adopted in clinical practice due to low

performance. This could be because of different sample sizes, effect sizes, publication biases

and methodological disparities preventing the strength and directionality of predictors from

being accurately accessed [17]. Other reasons could be lacking the selection of clinical or

behavioral features as well as demographic variables such as income which was associated with

treatment outcome in univariate analysis [12, 15]. In addition, none of these aforementioned

predicting models used neuroimaging data. Different from subjective data collected from dif-

ferent questionnaires, neuroimaging data are objective measurements and hence more accu-

rate. It has been recognized that neuroimaging measures may not be powerful for diagnostic

classification of MDD, but they may be useful in prediction treatment responses [18–20].

Because of the relatively high expense and technical difficulty to obtain neuroimaging data,

studies that collected neuroimaging data are generally in small scale, often with<100

participants.

Our objectives were to develop an advanced ML pipeline for small sample size (<100)

with large number of features, where the ML pipeline included data pre-processing, missing

value imputation, feature selection, predictive modeling, and model performance evalua-

tion. We used a training dataset from a single-site study and an external validation dataset

from a multi-site study to verify the generalization of our ML pipeline from single site to

multi-site. We further examined possible reasons for the unsatisfying predictive

performance.
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Materials and methods

We used data from two completed clinical trials: APAT study and EMBARC study. We built a

predictive modal and internally cross-validated the model using APAT study first. Then we

externally validated the model developed in a wholly independent clinical trial, EMBARC

study.

APAT study

APAT study is randomized, placebo-controlled clinical trial titled as Advancing Personalized

Antidepressant Treatment Using PET/MRI (ClinicalTrials.gov, NCT02623205), funded by the

National Institute of Mental Health (R01MH104512), the DANA Foundation, and the Brain

and Behavior Research Foundation. This study is approved by Stony Brook University IRB

(#570152). 85 participants with Major Depressive Disorder (MDD) enrolled between 3/20/

2015–3/04/2020 were used [21] and data used in this manuscript were assessed on 11/21/2021.

All participants have written informed contents and no minor participants were enrolled. Par-

ticipants enrolled in this trial had moderate depression and were randomized to receive either

escitalopram or placebo (Please see more information such as inclusion and exclusion criteria,

CONSORT diagram and treatment schema in [21]). Prior to treatment, all participants

received structural magnetic resonance imaging (MRI). A total of 612 features, such as thick-

ness or volume of 68 different brain regions, were extracted using a software program called

Freesurfer [22]. Participants also filled out multiple questionnaires before treatment and pro-

vided other demographic and clinical information such as age, body mass index (BMI),

comorbidities (other diseases) and age of MDD onset. Eight questionnaires were included in

our study because they contained features that other research groups found to be useful in pre-

dicting antidepressant treatment responses based on our literature review. Hence we included

all specific item scores, established domain/factor scores and total scores from these question-

naires as possible predictors in the later ML modeling step (Table 1). In addition, study partici-

pants were assessed by the Hamilton Depression Rating Scale (HDRS) longitudinally during 8

weeks of treatment on weeks 1, 2, 3, 4, 6 and 8.

Remission was defined by a 17-item HDRS score of no more than seven after eight weeks of

treatment [23]. Seven out of the 85 participants had missing week 8 HDRS Scores and hence

their remission status could not be defined. The remission rate is 37.2% (29 out of 78) in the

remaining 78 participants. There was no significant difference in the remission rate between

participants in two treatment arms: 34.2% (13 out of 38) among participants treated with SSRI

and 40% (16 out of 40) among participants treated with placebo (p-value = 0.6483). This is

consistent with previous studies showing placebo response is similar to SSRI response neuro-

biologically [24] and clinically [25–28]. Relatedly, in the APAT cohort, neurobiological

changes with treatment [29, 30] or prediction of treatment response [21, 31, 32] were not sig-

nificantly affected by treatment type. Therefore, we pooled all participants from both

Table 1. List of candidate features in APAT study for predicting remission.

MRI data obtained before treatment initiation (# of

features = 657)

Cortical thickness, gray matter volume, folding index and

other measures about the curvature and surface areas of 68

brain regions (34 left regions and 34 right regions), etc.

Questionnaire data administered at baseline

containing possible predictors based on existing

literature (# of features = 49, 36 HDRS and 13 QIDS)

1. HDRS: Hamilton Depression Rating Scale

2. QIDS: Quick Inventory of Depressive Symptoms

Note: only listed the questionnaires that were used in both

APAT study and EMBARC study.

Clinical and demographic data (# of features = 28) age, education, sex, current medications, etc.

https://doi.org/10.1371/journal.pone.0299625.t001
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treatment arms together to predict remission and included treatment assignment as a possible

predictor. Table 2 described these 78 participants’ summary characteristics and questionnaire

features by their known remission status (remission vs non-remission), where the same fea-

tures that existed in both APAT study and EMBARC study (our external validation data)-were

shown and a detailed questionnaire data dictionary is in Table A1 of S1 File.

EMBARC study

The Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care

for Depression (EMBARC) data were further included as an external validation dataset (Clini-

calTrials.gov, NCT01407094; U01 MH092250, http://embarc.utsouthwestern.edu/). In this

study, 296 participants with MDD were enrolled in a 2-stage Sequential Multiple Assignment

Randomized Trial (SMART) design in 4 different centers including Massachusetts General

Hospital Boston (MG), University of Michigan Ann Arbor (UM), Columbia University New

York City (CU), and UT Southwestern Medical Center Dallas (TX). Study participants were

assigned to two treatment arms: SSRI or placebo. Details on the EMBARC study design can be

found in [33]. The deidentified EMBARC data are available through the NIH repository

(https://nda.nih.gov/edit_collection.html?id=2199). We downloaded the data on 6/1/2018 and

we did not have access to identifying information. Baseline features including neuroimaging,

neurophysiological, and behavioral moderators from 197 participants were extracted for analy-

sis in this study. However, 50 of them did not complete the 17-item HDRS at week 8. Table 3

described these 147 participants with observed HDRS week 8 score and their characteristics

and questionnaire features by their known remission status (remitter vs non-remitter).

Data pre-processing and feature selection

Since we planned to use EMBARC data as an external validation set to examine our proposed

ML pipeline for APAT data, we first cleaned the APAT data based on clinical and statistical

information and then kept the same features that existed in both APAT and EMBARC data-

sets. Fig 1 provides an overview of this step.

In the APAT study, the structural MRI data contained different measures from all 68 brain

regions (34 left and 34 right brain regions). Besides regions’ gray volume and cortical thick-

ness, other measures reported by Freesurfer included folding index, curvature index etc. To

remove the redundancy and multicollinearity in these measures, we checked the pair-wise cor-

relations using the average Spearman’s rank correlation coefficient from all 68 brain regions

and only kept measures that are not highly correlated with each other (with an average correla-

tion coefficient <0.7). Consequently, only 4 different measures (cortical thickness, gray matter

volume, folding index and mean curvature) from each region were used in the following analy-

ses (total number of features from MRI = 272). We further eliminated some more features

whose information was included in multiple measures. For example, we included BMI, which

is a combined measure of height and weight, but excluded individual height and weight. In

addition, features with only one category or small counts (� 3) in one category or too many

missing values were excluded. In the end, we have 605 features combining MRI, questionnaire,

clinical and demographic data after these initial feature selection steps.

After keeping the same features of APAT data and EMBARC data, there were total of 282

participants with 361 features, where 307 brain imaging features, 49 questionnaire features

from QIDS and HDRS (including baseline and week 8 HDRS scores), 4 clinical and demo-

graphic features (age, total years of education, sex, and medication use).

Among all 282 participants enrolled in both clinical trials, 111 (39.36%) had one or more

missing values among the 361 features, 12 participants from APAT study and 99 participants
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Table 2. Descriptive statistics of study participants’ clinical variables, demographic variables and baseline questionnaire scores by remission status in APAT study.

Variable N of participants with missing

data

Level Total Non-Remitter (N = 49) Remitter (N = 29) P-value*

Clinical and Demographic Features

age (years) 0 49 vs

29

23.66±13.12 23.35±10.09 22.57±13.78 0.5626

Total education years 8 49 vs

28

15.00±2.00 15.00±2.50 14.50±3.00 0.0664

sex 0 F 56 (65.88%) 36 (73.47%) 17 (58.62%) 0.2068

M 29 (34.12%) 13 (26.53%) 12 (41.38%)

Treatment 0 SSRI 42 (49.41%) 25 (51.02%) 13 (44.83%) 0.6483

placebo 43 (50.59%) 24 (48.98%) 16 (55.17%)

QIDS

QIDS_01 (Falling Asleep) 4 49 vs

25

2.00±2.00 2.00±2.00 2.00±2.00 0.9715

QIDS_02 (Sleep During the Night) 4 49 vs

25

2.00±2.00 2.00±2.00 2.00±1.00 0.3711

QIDS_03 (Waking up Too Early) 4 49 vs

25

1.00±2.00 1.00±2.00 0.00±1.00 0.2559

QIDS_04 (Sleeping Too Much) 4 49 vs

25

0.00±1.00 0.00±1.00 0.00±1.00 0.4725

QIDS_05 (Feeling Sad) 4 49 vs

25

2.00±1.00 2.00±1.00 2.00±1.00 0.0209

QIDS_10 (Concentration/decision making) 4 49 vs

25

2.00±1.00 2.00±1.00 2.00±1.00 0.1869

QIDS_11 (View of Myself) 4 49 vs

25

2.00±2.00 3.00±2.00 1.00±2.00 0.0637

QIDS_12 (Thoughts of Death or Suicide) 4 49 vs

25

1.00±1.00 1.00±1.00 1.00±1.00 0.0998

QIDS_13 (General Interest) 4 49 vs

25

1.00±1.00 1.00±1.00 1.00±1.00 0.5220

QIDS_14 (Energy Level) 4 49 vs

25

2.00±1.00 2.00±1.00 2.00±1.00 0.1115

QIDS_15 (Feeling slowed down) 4 49 vs

25

1.00±1.00 1.00±1.00 1.00±1.00 0.0046

QIDS_16 (Feeling Restless) 4 49 vs

25

1.00±1.00 1.00±1.00 1.00±1.00 0.5209

QIDS total score 4 49 vs

25

15.00±5.00 15.00±5.00 13.00±5.00 0.0384

HDRS

Factor 1: Psychic depression

HDRS_01 (Depressed mood) 0 49 vs

29

2.00±2.00 2.00±2.00 2.00±1.00 0.6154

HDRS_02 (Feelings of guilt) 0 49 vs

29

2.00±1.00 2.00±1.00 2.00±1.00 0.0499

HDRS_03 (Suicide) 0 49 vs

29

1.00±2.00 1.00±2.00 0.00±1.00 0.0132

HDRS_08 (Retardation) 0 0 68 (80.00%) 41 (83.67%) 20 (68.97%) 0.1899

1 14 (16.47%) 6 (12.24%) 8 (27.59%)

2 3 (3.53%) 2 (4.08%) 1 (3.45%)

HDRS_22 (Helplessness) 0 49 vs

29

2.00±1.00 2.00±0.00 2.00±1.00 0.0039

HDRS_23 (Hopelessness) 0 49 vs

29

2.00±2.00 2.00±1.00 2.00±2.00 0.2418

(Continued)
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Table 2. (Continued)

Variable N of participants with missing

data

Level Total Non-Remitter (N = 49) Remitter (N = 29) P-value*

HDRS_24 (Worthlessness) 0 49 vs

29

2.00±1.00 2.00±2.00 1.00±1.00 0.0275

HDRS_F1_AS 0 49 vs

29

11.00±5.00 11.00±5.00 9.00±3.00 0.0129

HDRS_F1_LWS 0 49 vs

29

6.30±2.97 6.58±3.53 5.29±2.35 0.0145

Note:

a. HDRS_F1_AS was calculated by the arithmetic sum of all HDRS scores in Factor 1.

b. HDRS_F1_LWS = 0.59*HDRS_01+0.46*HDRS_02+0.67*HDRS_03+0.44*HDRS_08+0.41*HDRS_22+0.65*HDRS_23+0.79*HDRS_24.

Factor 2: Loss of motivated behavior

HDRS_07 (Work and activities) 0 49 vs

29

2.00±1.00 2.00±1.00 2.00±1.00 0.2583

HDRS_12 (Somatic symptoms (appetite)) 0 0 44 (51.76%) 26 (53.06%) 15 (51.72%) 0.9037

1 23 (27.06%) 13 (26.53%) 9 (31.03%)

2 18 (21.18%) 10 (20.41%) 5 (17.24%)

HDRS_14 (Genital symptoms (libido)) 0 0 46 (54.12%) 31 (63.27%) 13 (44.83%) 0.2107

1 17 (20.00%) 7 (14.29%) 8 (27.59%)

2 22 (25.88%) 11 (22.45%) 8 (27.59%)

HDRS_16 (Weight loss) 0 0 76 (89.41%) 44 (89.80%) 25 (86.21%) 0.7343

1 3 (3.53%) 1 (2.04%) 2 (6.90%)

2 6 (7.06%) 4 (8.16%) 2 (6.90%)

HDRS_F2_AS 0 49 vs

29

4.00±3.00 4.00±3.00 4.00±3.00 0.8784

HDRS_F2_LWS 0 49 vs

29

2.10±1.34 2.10±1.26 2.18±1.68 0.8438

Note:

a. HDRS_F2_AS was calculated by the arithmetic sum of all HDRS scores in Factor 2.

b. HDRS_F2_LWS = 0.42*HDRS_07+0.84*HDRS_12+0.50*HDRS_14+0.74*HDRS_16.

Factor 3: Psychosis

HDRS_17 (Insight) 0 0 85

(100.00%)

49 (100.00%) 29 (100.00%) .

HDRS_19 (Depersonalization and

derealization)

0 0 75 (88.24%) 40 (81.63%) 28 (96.55%) 0.1500

1 6 (7.06%) 5 (10.20%) 1 (3.45%)

2 4 (4.71%) 4 (8.16%) 0 (0.00%)

HDRS_20 (Paranoid symptoms) 0 0 80 (94.12%) 44 (89.80%) 29 (100.00%) 0.2145

1 4 (4.71%) 4 (8.16%) 0 (0.00%)

2 1 (1.18%) 1 (2.04%) 0 (0.00%)

HDRS_21 (Obsessive and compulsive) 0 0 76 (89.41%) 45 (91.84%) 26 (89.66%) 0.1718

1 6 (7.06%) 4 (8.16%) 1 (3.45%)

2 3 (3.53%) 0 (0.00%) 2 (6.90%)

HDRS_F3_AS 0 49 vs

29

0.00±0.00 0.00±1.00 0.00±0.00 0.0561

HDRS_F3_LWS 0 49 vs

29

0.00±0.00 0.00±0.41 0.00±0.00 0.0633

Note:

a. HDRS_F3_AS was calculated by the arithmetic sum of all HDRS scores in Factor 3.

b. HDRS_F3_LWS = 0.74*HDRS_17+0.41*HDRS_19+0.68*HDRS_20+0.68*HDRS_21.

Factor 4: Anxiety

HDRS_09 (Agitation) 0 49 vs

29

1.00±1.00 1.00±1.00 0.00±1.00 0.1640

(Continued)
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from EMBARC study. 57 participants had missing week 8 HDRS scores (7 from APAT study

and 50 from EMABRC study). To use all available data from these 282 participants and opti-

mize the sample size for small dataset, multiple imputation based on Markov chain Monte

Carlo (MCMC) method was used to create 10 new imputed datasets to eliminate missing data

[34, 35]. The missing data were imputed through a random sampling from a plausible statisti-

cal model using other existing data in the dataset. Therefore, several different plausible datasets

were generated in order to estimate the uncertainty about the missing data. We chose to

Table 2. (Continued)

Variable N of participants with missing

data

Level Total Non-Remitter (N = 49) Remitter (N = 29) P-value*

HDRS_10 (Anxiety—psychic) 0 49 vs

29

2.00±2.00 2.00±1.00 2.00±1.00 0.0016

HDRS_11 (Anxiety—somatic) 0 49 vs

29

1.00±1.00 2.00±1.00 1.00±2.00 0.0102

HDRS_15 (Hypochondrias) 0 49 vs

29

0.00±1.00 0.00±1.00 0.00±1.00 0.1912

HDRS_F4_AS 0 49 vs

29

5.00±2.00 5.00±2.00 4.00±2.00 0.0004

HDRS_F4_LWS 0 49 vs

29

2.90±1.58 3.08±1.58 2.28±1.42 0.0009

Note:

a. HDRS_F4_AS was calculated by the arithmetic sum of all HDRS scores in Factor 4.

b. HDRS_F4_LWS = 0.74*HDRS_19+0.62*HDRS_10+0.52*HDRS_11+0.68*HDRS_15.

Factor 5: Sleep disturbance

HDRS_04 (Insomnia—early) 0 0 32 (37.65%) 17 (34.69%) 11 (37.93%) 0.5061

1 7 (8.24%) 3 (6.12%) 4 (13.79%)

2 46 (54.12%) 29 (59.18%) 14 (48.28%)

HDRS_05 (Insomnia—middle) 0 0 31 (36.47%) 21 (42.86%) 9 (31.03%) 0.5626

1 27 (31.76%) 14 (28.57%) 11 (37.93%)

2 27 (31.76%) 14 (28.57%) 9 (31.03%)

HDRS_06 (Insomnia—late) 0 0 47 (55.29%) 23 (46.94%) 19 (65.52%) 0.2884

1 16 (18.82%) 11 (22.45%) 4 (13.79%)

2 22 (25.88%) 15 (30.61%) 6 (20.69%)

HDRS_F5_AS 0 49 vs

29

3.00±2.00 3.00±2.00 3.00±2.00 0.5036

HDRS_F5_LWS 0 49 vs

29

2.07±1.96 2.07±1.72 2.07±1.36 0.6934

Note:

a. HDRS_F5_AS was calculated by the arithmetic sum of all HDRS scores in Factor 5.

b. HDRS_F5_LWS = 0.74*HDRS_04+0.83*HDRS_05+0.59*HDRS_06.

HDRS_13 (Somatic symptoms—General) 0 0 7 (8.24%) 1 (2.04%) 2 (6.90%) 0.6436

1 29 (34.12%) 17 (34.69%) 11 (37.93%)

2 49 (57.65%) 31 (63.27%) 16 (55.17%)

HDRS_18 (Diurnal variation) 0 49 vs

29

2.00±3.00 2.00±3.00 2.00±3.00 0.5327

HDRS 17 Baseline Total 0 49 vs

29

18.00±5.00 18.00±4.00 16.00±5.00 0.0049

*: For categorical variables, p-values were based on Chi-squared test with exact p-value from Monte Carlo simulation; for continuous variable, p-value was based on

Wilcoxon rank sum test.

Note: For continuous variable, median+/-IQR were reported.

HDRS factor classifications and calculations of load-weighted sum from a 24-item HDRS were based on Milak et al., 2005.HDRS 17 Baseline Total was calculated by

the sum of 17 HDRS scores from HDRS_01 to HDRS_17.

https://doi.org/10.1371/journal.pone.0299625.t002
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Table 3. Descriptive statistics of study participants’ clinical variables, demographic variables and baseline questionnaire scores by remission status in EMBARC

study.

Variable N missing Level Total Non-Remitter (N = 92) Remitter (N = 55) P-value*
Clinical and Demographic Features

Age (years) 0 92 vs 55 33.00±22.00 35.00±23.00 33.00±22.00 0.6223

total education years 3 91 vs 53 15.00±3.00 15.00±4.00 16.00±2.25 0.6565

sex 2 F 124 (63.59%) 53 (58.24%) 37 (68.52%) 0.2983

M 71 (36.41%) 38 (41.76%) 17 (31.48%)

treatment 0 SSRI 94 (47.72%) 43 (46.74%) 24 (43.64%) 0.7147

Placebo 103 (52.28%) 49 (53.26%) 31 (56.36%)

QIDS

QIDS_01 (Falling Asleep) 0 92 vs 55 2.00±1.00 2.00±1.00 2.00±1.00 0.4469

QIDS_02 (Sleep During the Night) 0 92 vs 55 2.00±2.00 2.00±2.00 2.00±2.00 0.4470

QIDS_03 (Waking up Too Early) 0 92 vs 55 1.00±2.00 1.00±2.50 1.00±2.00 0.0610

QIDS_04 (Sleeping Too Much) 0 92 vs 55 1.00±2.00 1.00±2.00 1.00±2.00 0.9201

QIDS_05 (Feeling Sad) 0 1 10 (5.08%) 5 (5.43%) 2 (3.64%) 0.0426

2 89 (45.18%) 34 (36.96%) 32 (58.18%)

3 98 (49.75%) 53 (57.61%) 21 (38.18%)

QIDS_10 (Concentration/decision making) 0 92 vs 55 2.00±0.00 2.00±0.00 2.00±0.00 0.3135

QIDS_11 (View of Myself) 0 92 vs 55 3.00±1.00 3.00±1.00 3.00±1.00 0.8812

QIDS_12 (Thoughts of Death or Suicide) 1 91 vs 55 1.00±2.00 1.00±1.00 1.00±2.00 0.1639

QIDS_13 (General Interest) 1 91 vs 55 2.00±1.00 2.00±1.00 2.00±2.00 0.2943

QIDS_14 (Energy Level) 1 91 vs 55 2.00±0.00 2.00±0.00 2.00±0.00 0.1003

QIDS_15 (Feeling slowed down) 1 91 vs 55 1.00±1.00 1.00±1.00 1.00±1.00 0.8498

QIDS_16 (Feeling Restless) 1 91 vs 55 1.00±2.00 1.00±1.00 1.00±2.00 0.0498

QIDS_total 1 91 vs 55 18.00±4.00 18.00±4.00 18.00±6.00 0.7653

HDRS

Factor 1: Psychic depression

HDRS_01 (Depressed mood)HDRS 2 91 vs 54 3.00±1.00 3.00±1.00 2.50±1.00 0.5529

HDRS_02 (Feelings of guilt) 2 91 vs 54 2.00±1.00 2.00±1.00 2.00±1.00 0.8379

HDRS_03 (Suicide) 2 91 vs 54 3.00±1.00 3.00±1.00 2.00±1.00 0.1121

HDRS_08 (Retardation) 2 91 vs 54 1.00±2.00 1.00±2.00 0.00±2.00 0.4721

HDRS_22 (Helplessness) 2 91 vs 54 2.00±1.00 2.00±0.00 2.00±1.00 0.2130

HDRS_23 (Hopelessness)HDRS 2 91 vs 54 1.00±2.00 1.00±2.00 1.00±2.00 0.2168

HDRS_24 (Worthlessness) 2 91 vs 54 2.00±1.00 2.00±1.00 2.00±1.00 0.6532

HDRS_F1_AS 2 91 vs 54 13.00±4.00 13.00±3.00 13.00±4.00 0.3739

HDRS_F1_LWS 2 91 vs 54 7.29±2.40 7.25±2.17 7.56±2.08 0.4076

Note:

a. HDRS_F1_AS was calculated by the arithmetic sum of all HDRS scores in Factor 1.

b. HDRS_F1_LWS = 0.59*HDRS_01+0.46*HDRS_02+0.67*HDRS_03+0.44*HDRS_08+0.41*HDRS_22+0.65*HDRS_23+0.79*HDRS_24.

Factor 2: Loss of motivated behavior

HDRS_07 (Work and activities) 2 91 vs 54 1.00±2.00 1.00±2.00 1.00±1.00 0.0462

HDRS_12 (Somatic symptoms (appetite)) 2 91 vs 54 0.00±1.00 0.00±1.00 0.00±1.00 0.2176

HDRS_14 (Genital symptoms (libido)) 2 91 vs 54 0.00±1.00 0.00±0.00 0.00±1.00 0.0081

HDRS_16 (Weight loss) 2 91 vs 54 0.00±1.00 0.00±1.00 0.00±0.00 0.0721

HDRS_F2_AS 2 91 vs 54 2.00±2.00 2.00±2.00 2.00±2.00 0.1594

HDRS_F2_LWS 2 91 vs 54 1.16±1.42 1.26±1.16 0.92±1.00 0.1497

Note:

a. HDRS_F2_AS was calculated by the arithmetic sum of all HDRS scores in Factor 2.

b. HDRS_F2_LWS = 0.42*HDRS_07+0.84*HDRS_12+0.50*HDRS_14+0.74*HDRS_16.

(Continued)
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generate 10 such imputed datasets as most papers used < = 10 imputations and actually 3–5

imputations could lead to excellent results in theory [36]. We used PROC MI in SAS 9.4 (SAS

Institute Inc., Cary, NC) to impute all missing data. Imputed values for features that only had

integer values were rounded and constrained within their existing lower and upper boundaries

in the dataset. For example, if an imputed value was less than 0 but its lower bound was, it

would be assigned a value of 0. Week-8 HDRS scores were imputed for the 57 participants

who were missing them, and as such their missing remission status could then be determined.

Table 4 showed the frequency of remission in all 10 imputed datasets ranging from 34.12% to

40% for APAT data and 30.46% to 39.09% for EMBARC data.

For each imputed dataset, we first used APAT data as the training set and EMBARC data as

the testing set. But to evaluate the effect on prediction performance due to possible study site

Table 3. (Continued)

Variable N missing Level Total Non-Remitter (N = 92) Remitter (N = 55) P-value*
Factor 3: Psychosis

HDRS_17 (Insight) 57 71 vs 32 0.00±0.00 0.00±0.00 0.00±0.00 0.8969

HDRS_19 (Depersonalization and derealization) 2 91 vs 54 3.00±2.00 3.00±2.00 3.00±1.00 0.2487

HDRS_20 (Paranoid symptoms) 2 91 vs 54 1.00±2.00 1.00±2.00 1.00±2.00 0.2337

HDRS_21 (Obsessive and compulsive) 2 91 vs 54 2.00±1.00 2.00±1.00 2.00±1.00 0.6382

HDRS_F3_AS 57 71 vs 32 6.00±2.00 6.00±3.00 6.00±2.50 0.9914

HDRS_F3_LWS 57 71 vs 32 3.27±1.69 3.27±1.77 3.14±1.72 0.8499

Note:

a. HDRS_F3_AS was calculated by the arithmetic sum of all HDRS scores in Factor 3.

b. HDRS_F3_LWS = 0.74*HDRS_17+0.41*HDRS_19+0.68*HDRS_20+0.68*HDRS_21.

Factor 4: Anxiety

HDRS_09 (Agitation) 2 91 vs 54 0.00±0.00 0.00±0.00 0.00±1.00 0.5704

HDRS_10 (Anxiety—psychic) 2 91 vs 54 1.00±1.00 0.00±1.00 1.00±1.00 0.0982

HDRS_11 (Anxiety—somatic) 2 91 vs 54 0.00±1.00 0.00±1.00 0.00±0.00 0.0212

HDRS_15 (Hypochondrias) 53 72 vs 33 0.00±0.00 0.00±0.00 0.00±0.00 0.6377

HDRS_F4_AS 53 72 vs 33 1.00±2.00 1.00±1.00 1.00±1.00 0.8578

HDRS_F4_LWS 53 72 vs 33 0.74±1.46 0.62±0.90 0.62±0.84 0.6904

Note:

a. HDRS_F4_AS was calculated by the arithmetic sum of all HDRS scores in Factor 4.

b. HDRS_F4_LWS = 0.74*HDRS_19+0.62*HDRS_10+0.52*HDRS_11+0.68*HDRS_15.

Factor 5: Sleep disturbance

HDRS_04 (Insomnia—early) 2 91 vs 54 2.00±1.00 2.00±1.00 2.00±1.00 0.7927

HDRS_05 (Insomnia—middle) 2 91 vs 54 2.00±1.00 3.00±1.00 2.00±2.00 0.0242

HDRS_06 (Insomnia—late) 2 91 vs 54 1.00±2.00 2.00±2.00 1.00±2.00 0.3630

HDRS_F5_AS 2 91 vs 54 5.00±2.00 5.00±3.00 5.00±3.00 0.1139

HDRS_F5_LWS 2 91 vs 54 3.97±1.66 3.97±1.92 3.66±2.07 0.1006

Note:

a. HDRS_F5_AS was calculated by the arithmetic sum of all HDRS scores in Factor 5.

b. HDRS_F5_LWS = 0.74*HDRS_04+0.83*HDRS_05+0.59*HDRS_06.

HDRS_13 (Somatic symptoms—General) 2 91 vs 54 1.00±2.00 1.00±2.00 0.00±1.00 0.7050

HDRS_18 (Diurnal variation) 2 91 vs 54 2.00±1.00 2.00±1.00 2.00±1.00 0.4203

HDRS 17 Baseline Total 60 69 vs 31 19.00±6.00 18.00±6.00 18.00±6.00 0.4197

*: For categorical variables, p-values were based on Chi-squared test with exact p-value from Monte Carlo simulation; for continuous variable, p-value was based on

Wilcoxon rank sum test.

Note: For continuous variable, median+/-IQR were reported.

HDRS factor classifications and calculations of load-weighted sum were from 24-item HDRS based on Milak et al., 2005. HDRS 17 Baseline Total was calculated by the

sum of 17 HDRS scores from HDRS_01 to HDRS_17.

https://doi.org/10.1371/journal.pone.0299625.t003
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Fig 1. Flowchart of data pre-processing.

https://doi.org/10.1371/journal.pone.0299625.g001

Table 4. Frequency table of remission vs non-remission in all 10 imputed datasets within each of two studies.

Imputation EMBARC APAT

Non-Remission N (%) Remission N (%) Non-Remission N (%) Remission N (%)

1 120 (60.91%) 77 (39.09%) 54 (63.53%) 31 (36.47%)

2 134 (68.02%) 63 (31.98%) 56 (65.88%) 29 (34.12%)

3 137 (69.54%) 60 (30.46%) 54 (63.53%) 31 (36.47%)

4 127 (64.47%) 70 (35.53%) 55 (64.71%) 30 (35.29%)

5 122 (61.93%) 75 (38.07%) 54 (63.53%) 31 (36.47%)

6 124 (62.94%) 73 (37.06%) 54 (63.53%) 31 (36.47%)

7 129 (65.48%) 68 (34.52%) 56 (65.88%) 29 (34.12%)

8 121 (61.42%) 76 (38.58%) 51 (60%) 34 (40%)

9 124 (62.94%) 73 (37.06%) 54 (63.53%) 31 (36.47%)

10 120 (60.91%) 77 (39.09%) 56 (65.88%) 29 (34.12%)

https://doi.org/10.1371/journal.pone.0299625.t004
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heterogeneity, we also divided the 282 participants into 2/3 training set and 1/3 testing set

where no systematic study site difference exists in addition to using EMBARC data as the

training set and APAT data as the testing set.

Since the sample size was much smaller than the number of features, an appropriate feature

selection method was essential instead of putting all the features into machine learning models.

We considered various of feature selection methods including pairwise correlation (randomly

kept one feature for the highly correlated pairs with correlation>0.7), univariate analysis (fea-

tures were selected with a univariate p-value<0.1 based on Wilcoxon rank sum test for contin-

uous features and Chi-squared test for categorical features by remission status), principal

component analysis (PCA), and AutoEncoder [37]. However, none of the feature selection

methods could obtain a relatively good performance (i.e., low accuracy or AUC). Therefore,

according to the approaches that selected top 50 ranked features based on the importance

ranking values [15, 38], we implemented a new method to select the top 50 most frequent top-

ranked features based on our small dataset. 6 models including Random Forest, Lasso, Ridge,

XGBoost, SVM, and Neural Network with 5 repeated 5-fold cross validation were iterated over

the 10 imputed datasets. Top 20 ranked features were output each time so that we had a total

of 30,000 (top 20 ranked features * repeated 5 times * 5-fold CV * 6 models * 10 datasets) fea-

tures. Then we calculated the frequency for the above 300,000 features and kept the top 50

most frequent variables (Table A2 in S1 File has a list of these 50 features based on different

training sets).

The importance ranking values describe how much each feature contributes to the predic-

tion. The default importance ranking results from the Python sklearn module were used. For

example, the importance ranking from the penalized logistic regression model is based on the

fitted coefficients. For SVM and neural network approaches, which lack package-built-in fea-

ture importance measurements, permutation feature importance was used. Permutation fea-

ture importance is defined as the decrease of a model performance score when single feature

values are randomly shuffled among participants, which can be implemented to any fitted pre-

dictors [39]. In Python, permutation_importance function from sklearn.inspection module

was used to perform permutation feature importance ranking.

The last step before we constructed ML models was to standardize all continuous features

by centering and scaling for each training and testing pairs from the cross-validation method

using this formula:
xp � m
s

, where xp denoted values of a feature/predictor, μ was the mean and σ
was standard deviation of xp. This was to ensure that there was no bias within the data due to

varying ranges of each feature and different unit. Standardization utilized the StandardScaler.
fit_transform function in the Python module sklearn.preprocessing.

Predictive modeling

In APAT study, due to the relatively small number of participants in our dataset, we used five

repeated four-fold CV to robustly evaluate the performance of our predictive modeling pipe-

line [40]. Basically, we partitioned the training data from an imputed dataset into four groups

(folds) with relatively equal size of participants. Each fold was considered as the testing set and

the remaining three folds were the training set used to train the ML models for predicting

remission on the testing set. We repeated this process 5 times with different splits each time to

minimize the variation across different split and increase the stability of the final results [41].

This modeling process used the function RepeatedKFold under Python module sklearn.mod-
el_selection. To select the best set of hyperparameters for each of the four training sets, we fur-

ther implemented a 3-fold nested cross-validation using function GridSearchCV under Python

module sklearn.model_selection [40, 42, 43]. Furthermore, we applied our predictive
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modeling pipeline to an external dataset, the final predictor used the trained model based on

4-fold cross-validation but with all samples from the training data set.

For each training and testing split, following the feature selection (top 50 most frequent fea-

tures) and standardization, 6 popularly usedML models based on Random Forest, Penalized

Logistic Regression, XGBoost, Support Vector Machine (SVM), Gradient Boosting Decision

Tree, and Neural Network were implemented. After ensembling the predicted results from the

6 models together, we further built a meta model named Stacking using logistic regression

[42, 43].

1. Penalized logistic regression including l1-regularization Lasso regression [44], l2-regulariza-
tion Ridge regression [45], and elastic-net regression [46] using LogisticRegression function

under Python module sklearn.linear_model with parameter penalty = "l1"/"l2"/"elasticnet".

2. Random forest [47] using RandomForestClassifier function from Python module sklearn.

ensemble.

3. Gradient boosted decision trees [48] using GradientBoostingClassifier function from Python

module sklearn.ensemble.

4. XGBoost [49] using XGBClassifier function in Python Python module xgboost.

5. Support vector machine [50] using SVC function in the Python module sklearn.svm.

6. Neural network [51] using MLPClassifier function from Python module sklearn.

neural_network.

Stacking method was an ensemble algorithm that combines results from base models (level

0 models) and then made prediction using the meta model (level 1 model). Based on the pre-

dicted probabilities from the above 6 models as base models each time, 6 features at level 1

modelling step were constructed for both training and testing sets, respectively. Logistic

regression was further implemented as the meta model fitting with the 6 predictors to obtain

the final predictive results. Logistic regression used LogisticRegression function under Python

module sklearn.linear_model with parameter penalty = "none". Besides a stacking method

using all 6 ML models, another stacking model was constructed using penalized logistic regres-

sion and neural network because of the better performance from these two base ML models on

average in our study.

Predictive performance evaluation

Two sets of model performance results including results from training set and results from

testing set were reported. Model performances were assessed using measures such as accuracy

defined as the % of all participants correctly classified, balanced accuracy (average of accuracy

within remitters and non-remitters), area under the curve (AUC) which is a measure of dis-

crimination, sensitivity (% of true positive), specificity (% of true negative), positive predictive

value (% of true positive among positive predicted), and negative predictive value (% of true

negative among positive predicted, [40]). The average and standard error were calculated for

each performance measure. For the training set, the corresponding standard errors (se) were

the combined results from 5 repeated 4-fold CV iterating over 10 imputed datasets, which

were summarized using Rubin’s rule [34] and were used to calculate Wald-type 95% confi-

dence intervals (CI: point estimate±1.96*se, see A0 in S1 File for detailed formula). For the

testing set, the standard errors for testing set performances were calculated based on the for-

mula s=
ffiffiffi
n
p

(n = 10) for the 10 imputed datasets. The AUC values were calculated used func-

tion roc_auc_score under Python module sklearn.metrics and other performances were
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calculated from the confusion matrix using function confusion_matrix under Python module

sklearn.metrics.
ROC curves (sensitivity vs 1-specificity) for multiple sub-groups were generated based on

the average results of testing sets from 10 imputed datasets using the ML model with the best

predictive performance using internal cross-validation on training set. The steps are described

below:

• Step 1: Divide the data first by subgroup then by imputation, and set a sequence of thresholds

(e.g. seq(0, 1, -0.0001) or a vector of predicted probabilities).

• Step 2: Iterate over the thresholds and calculate the corresponding sensitivity and specificity

for each single dataset.

• Step 3: Calculate the AUC for each single dataset.

• Step 4: Iterate over 10 imputed datasets to repeat Step 2 to Step 3, calculate the average sensi-

tivity and average specificity by the sequence of thresholds, and calculate the average AUC

over 10 imputed datasets.

• Step 5: Iterate over groups (sex, baseline_HDRS17, baseline_HDRS_F4_AS, baseli-

ne_HDRS_F4_LWS, placebo, site) and repeat Step 2 to Step 4.

• Step 6: Draw ROC curves by subgroup.

R function compareROCindep() from nsROC package was used to compare k (k> = 2)

independent ROC curves for each imputed dataset, where the default setting of statistics based

on nonparametric statistics named “L1 statistic proposed in Martinez-Camblor” was used

[52]. After iterating over 10 imputed datasets, a list of 10 p-values were output. Harmonic

mean p-value (HMP) method [53] was further implemented to combine the p-values assuming

the hypothesis tests among 10 imputed datasets were dependent with unknown dependency

structure. The null hypothesis for HMP is none of the p-values are significant. The formula of

HMP to get final p-value, ~p, is

~p ¼
PL

i¼1
oi

PL
i¼1
oi=pi

;

where ω1, ω2, . . ., ωL are weights satisfying
PL

i¼1
oi ¼ 1, where pi’s are the p-values for the

imputed datasets, L is the total number of p-values, and ωi = 1/L were used for our results.

Example R codes can be found in section A4 of S1 File.

Fig 2 below illustrates our overall predictive modeling pipeline. Example python codes can

be found in section A5 of S1 File.

Results

Using APAT data for training and EMBARC data for external validation

We considered the APAT data as training dataset and obtained the model performance evalua-

tions in Table 5 including Sensitivity, Specificity, Positive predicted value, Negative predicted

value, Accuracy, Balanced Accuracy, and AUC for binary outcome Remission. EMBARC data

were used as the external validation set to examine the performance of our ML pipeline.

According to the results, the penalized logistic regression model had the highest accuracy

(0.8341 ± 0.0202) and AUC (0.8257 ± 0.0257) values among all 6 models plus 2 stacking mod-

els using different base ML models.
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However, the testing results via EMBARC data had much worse model performances,

where all the AUC values were smaller than 0.5 indicating the models were meaningless. We

note that the EMBARC data were from 4 different sites, while the APAT data were from the

single site. In addition, the APAT study and EMBARC study provided different treatments.

Fig 2. Overall predictive modeling pipeline. A) Stacking method: Predictions from six individual ML models were

the inputs to construct the final predictive model; B) Predictive modeling pipeline from data preprocessing to final

performance evaluation for training data only; C) Predictive modeling pipeline with external validation using testing

data.

https://doi.org/10.1371/journal.pone.0299625.g002
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The APAT participants were significantly younger than EMBARC participants (median 23.66

vs. 33.00, p-value < 0.0001). Therefore, the ROC curves from predicting results of testing set

(EMBARC data) using penalized logistic regression which had the best predictive performance

from internal cross-validation using training set as suggested by Table 5 by different groups

such as sex, HDRS 17, HDRS factor 4, medication or placebo, and site were drawn in Fig 3 to

explore possible reasons for the unacceptable prediction performance while externally validat-

ing the ML model from APAT data. Even though all the p-values testing the differences

between/among ROC curves were not significant for neither penalized logistic regression or

stacking, we could still notice a difference of ROC curves by sites, where participants from CU

Table 5. Model performance results based on random forest, gradient boosting, penalized logistic regression, XGBoost, SVM, neural network, and stacking for

APAT data as training set and EMBARC data as testing set after multiple imputation for 10 times.

Model Name sensitivity

(se)

specificity

(se)

PPV (se) NPV (se) ACC (se) BA (se) AUC (se)

Random Forest Training set

APAT

0.4305

(0.0577)

0.9582

(0.021)

0.8606

(0.0517)

0.7503

(0.009)

0.7692

(0.0145)

0.6944

(0.0259)

0.7054

(0.0298)

Testing set

EMBARC

0.4065

(0.1511)

0.5818

(0.1548)

0.3589

(0.072)

0.6304

(0.0538)

0.5188

(0.0614)

0.4941

(0.039)

0.4941

(0.0404)

Gradient Boosting Training set

APAT

0.2423

(0.0602)

0.9837

(0.0154)

0.9111

(0.0854)

0.6986

(0.0161)

0.7174

(0.0203)

0.613

(0.0299)

0.615

(0.0309)

Testing set

EMBARC

0.2945

(0.2883)

0.6859

(0.2928)

0.3229

(0.104)

0.6293

(0.0525)

0.5391

(0.1079)

0.4902

(0.0399)

0.4902

(0.041)

SVM Training set

APAT

0.6167

(0.052)

0.9363

(0.0158)

0.8477

(0.03)

0.814

(0.0136)

0.8219

(0.0141)

0.7765

(0.0238)

0.7824

(0.0325)

Testing set

EMBARC

0.6423

(0.0848)

0.3344

(0.0773)

0.3535

(0.0488)

0.6208

(0.079)

0.4467

(0.0395)

0.4884

(0.0379)

0.4884

(0.039)

XGBoost Training set

APAT

0.5688

(0.0529)

0.8745

(0.0245)

0.7205

(0.0487)

0.7838

(0.0139)

0.7652

(0.0208)

0.7216

(0.0276)

0.7256

(0.0302)

Testing set

EMBARC

0.4568

(0.1446)

0.5292

(0.1211)

0.3508

(0.0686)

0.6319

(0.0656)

0.5035

(0.0505)

0.493

(0.0462)

0.493

(0.047)

Penalized logistic regression Training set

APAT

0.7893

(0.0289)

0.8592

(0.0211)

0.7612

(0.023)

0.8786

(0.0213)

0.8341

(0.0202)

0.8243

(0.0202)

0.8257

(0.0257)

Testing set

EMBARC

0.7516

(0.0574)

0.2287

(0.0653)

0.3556

(0.0509)

0.6182

(0.0905)

0.4178

(0.0476)

0.4902

(0.0433)

0.4902

(0.044)

Neural Network Training set

APAT

0.7535

(0.0207)

0.8524

(0.0282)

0.7442

(0.0257)

0.8602

(0.0155)

0.8172

(0.0192)

0.8029

(0.0154)

0.8041

(0.0217)

Testing set

EMBARC

0.7744

(0.0665)

0.2021

(0.0708)

0.3548

(0.05)

0.6091

(0.0835)

0.4086

(0.0457)

0.4883

(0.0379)

0.4882

(0.039)

Stacking (Using above 6 models) Training set

APAT

0.5597

(0.0408)

0.9502

(0.0168)

0.8684

(0.0368)

0.7938

(0.013)

0.8101

(0.0154)

0.7549

(0.0201)

0.7554

(0.0279)

Testing set

EMBARC

0.5808

(0.149)

0.4043

(0.1531)

0.3547

(0.0584)

0.6253

(0.0667)

0.466

(0.0592)

0.4926

(0.0411)

0.4925

(0.0423)

Stacking (Using Penalized logistic

regression and Neural Network)

Training set

APAT

0.7515

(0.0198)

0.8546

(0.0296)

0.747

(0.0278)

0.8595

(0.0156)

0.8179

(0.02)

0.8031

(0.0156)

0.8045

(0.021)

Testing set

EMBARC

0.777

(0.0664)

0.2013

(0.0683)

0.3554

(0.0495)

0.611

(0.0838)

0.4091

(0.0446)

0.4892

(0.0376)

0.4892

(0.0389)

Note:

1. Average (se) were calculated for the following model performance: Sensitivity = sensitivity (True Positive Rate, Recall) = TP/(TP+FN); Specificity = specificity (True

Negative Rate) = TN/(TN+FP); PPV (Positive Predicted Value, Precision) = TP/(TP+FP); NPV (Negative Predicted Value) = TN/(TN+FN); Accuracy (ACC) = (TP

+TN)/(TP+TN+FP+FN); Balanced Accuracy (BA) = (sensitivity+specificity)/2

2. Standard error (se) was calculated based on Rubin’s rule for imputed data. For the se of AUC in testing data, bootstrapping method repeated 1000 times was used to

estimate the within-subject variance.

https://doi.org/10.1371/journal.pone.0299625.t005
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and UM sites had higher AUC values than participants from TX and MG. To verify it is small

sample size of training set or the site difference that caused the issue, we further performed

another two sets of results using (1) EMBARC data as training set with sample sized doubled

and APAT data as testing set, and (2) the 2/3 combined APAT and EMBARC data as training

set and 1/3 combined data as testing set.

Fig 3. ROC curves comparison across groups based on penalized logistic regression which had the best predictive performance from internal cross-

validation using training set.

https://doi.org/10.1371/journal.pone.0299625.g003

PLOS ONE Predicting remission in participants with major depressive disorder using neuroimaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0299625 March 28, 2024 16 / 26

https://doi.org/10.1371/journal.pone.0299625.g003
https://doi.org/10.1371/journal.pone.0299625


Using EMBARC data for training data and APAT data as external

validation data

Since EMBARC data had larger sample size than APAT data, we used EMBARC data as the

training set and APAT data as the external validation set. Similar model performance results

were shown in Table 6 and Fig 4. In Table 6, the stacking method with results from penalized

logistic regression and neural network had the highest accuracy (0.7026 ± 0.0254) and AUC

(0.6778 ± 0.0211) values among all 6 models plus 2 stacking models. The model performances

using EMBARC data as training set had a significant drop comparing to the results using

APAT as training set. Besides, the accuracies and AUCs using APAT data as testing set had a

slightly increase than the above EMARC data as testing set (AUCs around 0.5).

Table 6. Model performance results based on random forest, gradient boosting, penalized logistic regression, XGBoost, SVM, neural network, and stacking for

EMBARC data as training set and APAT data as testing set after multiple imputation for 10 times.

Model Name sensitivity

(se)

specificity

(se)

PPV (se) NPV (se) ACC (se) BA (se) AUC (se)

Random Forest Training set

EMBARC

0.1096

(0.0714)

0.9565

(0.0315)

0.6221 (0) 0.6557

(0.0263)

0.6524

(0.029)

0.5331

(0.0227)

0.5384

(0.0242)

Testing set

APAT

0.0126

(0.0324)

0.9759

(0.0576)

0.2583

(0.2154)

0.6371

(0.0566)

0.6294

(0.0619)

0.4942

(0.0571)

0.4942

(0.0491)

Gradient Boosting Training set

EMBARC

0.2463

(0.066)

0.8858

(0.032)

0.5516

(0.0698)

0.6759

(0.0314)

0.6557

(0.0313)

0.566

(0.0278)

0.5697

(0.0263)

Testing set

APAT

0.0871

(0.091)

0.8877

(0.0974)

0.3884

(0.3461)

0.6327

(0.0585)

0.6 (0.0605) 0.4874

(0.0595)

0.4874

(0.0516)

SVM Training set

EMBARC

0.3618

(0.0697)

0.8595

(0.0494)

0.6024

(0.0485)

0.7049

(0.0231)

0.6823

(0.0305)

0.6107

(0.0238)

0.6171

(0.0245)

Testing set

APAT

0.1335

(0.0804)

0.8875

(0.0577)

0.3914

(0.1855)

0.6455

(0.0601)

0.6165

(0.0599)

0.5105

(0.059)

0.5105

(0.0516)

XGBoost Training set

EMBARC

0.3939

(0.0522)

0.7678

(0.042)

0.4921

(0.043)

0.6915

(0.0287)

0.6345

(0.0303)

0.5808

(0.0227)

0.5875

(0.0225)

Testing set

APAT

0.1941

(0.1431)

0.7679

(0.1672)

0.3535

(0.1962)

0.627

(0.067)

0.56

(0.0857)

0.481

(0.0695)

0.481

(0.0634)

Penalized logistic regression Training set

EMBARC

0.56 (0.0493) 0.7744

(0.038)

0.5854

(0.0501)

0.7571

(0.0264)

0.6983

(0.0295)

0.6672

(0.0295)

0.6717

(0.0302)

Testing set

APAT

0.1753

(0.0946)

0.8286

(0.0604)

0.3592

(0.1515)

0.6414

(0.0617)

0.5941

(0.0598)

0.502

(0.062)

0.502

(0.0546)

Neural Network Training set

EMBARC

0.5663

(0.0369)

0.7778

(0.0359)

0.5933

(0.0289)

0.7598

(0.0281)

0.7026

(0.0268)

0.672

(0.0208)

0.6775

(0.022)

Testing set

APAT

0.23 (0.1112) 0.7926

(0.0783)

0.3764

(0.1301)

0.6474

(0.064)

0.5894

(0.0602)

0.5113

(0.0605)

0.5113

(0.0528)

Stacking (Using above 6 models) Training set

EMBARC

0.3892

(0.0576)

0.8457

(0.0331)

0.5915

(0.0378)

0.7105

(0.0283)

0.6822

(0.0279)

0.6174

(0.0231)

0.6242

(0.0229)

Testing set

APAT

0.1307

(0.0968)

0.8699

(0.0988)

0.4396

(0.2847)

0.6394

(0.0584)

0.6035

(0.0651)

0.5003

(0.0617)

0.5003

(0.0549)

Stacking (Using Penalized logistic

regression and Neural Network)

Training set

EMBARC

0.5676

(0.0359)

0.7771

(0.0344)

0.5929

(0.0285)

0.7603

(0.0273)

0.7026

(0.0254)

0.6724

(0.0196)

0.6778

(0.0211)

Testing set

APAT

0.23 (0.1112) 0.7944

(0.0768)

0.3782

(0.1313)

0.6479

(0.0636)

0.5906

(0.0596)

0.5122

(0.0607)

0.5122

(0.0536)

Note:

1. Average (se) were calculated for the following model performance: Sensitivity = sensitivity (True Positive Rate) = TP/(TP+FN); Specificity = specificity (True Negative

Rate) = TN/(TN+FP); PPV (Positive Predicted Value) = TP/(TP+FP); NPV (Negative Predicted Value) = TN/(TN+FN); Accuracy (ACC) = (TP+TN)/(TP+TN+FP

+FN); Balanced Accuracy (BA) = (sensitivity+specificity)/2

2. Standard error (se) was calculated based on Rubin’s rule for imputed data. For the se of AUC in testing data, bootstrapping method repeated 1000 times was used to

estimate the within-subject variance.

https://doi.org/10.1371/journal.pone.0299625.t006
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Using APAT+EMBARC data for training and external validation

The combined APAT+EMBARC data were further divided into 2/3 as training set and 1/3 as

testing set to compare the results above. According to the training results in Table 7, the stack-

ing method with results from penalized logistic regression and neural network had the highest

accuracy (0.6866 ± 0.0269) and AUC (0.6535 ± 0.0325) values among all 6 models plus 2 stack-

ing methods. Even though the training results from 2/3 combined data were not as good as

Fig 4. ROC curves comparison across groups based on the stacking method using penalized logistic regression and neural network which had the

best predictive performance from internal cross-validation using training set.

https://doi.org/10.1371/journal.pone.0299625.g004
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APAT study, all the model metrics from the testing results were close to the training results,

which indicated the validity of our ML pipeline. One of the reasons that caused the lower per-

formances comparing to APAT study such as Accuracy and AUC was that the training data

were from 5 different sites and there might existed system bias across different sites causing

too much background noises (Fig 5).

Discussion

In this paper, we first developed a general machine learning pipeline for prediction of MDD

remission after treatment of escitalopram or placebo using 85 participants from APAT data

Table 7. Model performance results based on random forest, gradient boosting, penalized logistic regression, XGBoost, SVM, neural network, and stacking for 2/3

combined data as training set and 1/3 combined data as testing set after multiple imputation for 10 times.

Model Name sensitivity

(se)

specificity

(se)

PPV (se) NPV (se) ACC (se) BA (se) AUC (se)

Random Forest Training set

2/3

0.0667

(0.0597)

0.96 (0.0289) 0.4902

(< .0001)

0.6442

(0.0204)

0.6377

(0.0235)

0.5134

(0.0192)

0.5165

(0.021)

Testing set 1/

3

0.0516

(0.0807)

0.9695

(0.0491)

0.4761

(0.2836)

0.6476

(0.082)

0.6394

(0.0779)

0.5106

(0.0549)

0.5106

(0.0475)

Gradient Boosting Training set

2/3

0.2067

(0.0852)

0.8916

(0.0477)

0.5262

(0.1012)

0.6648

(0.0288)

0.6447

(0.0353)

0.5492

(0.0328)

0.5527

(0.0343)

Testing set 1/

3

0.3277

(0.1706)

0.8368

(0.1054)

0.5271

(0.2303)

0.6934

(0.0919)

0.6543

(0.0675)

0.5823

(0.0636)

0.5822

(0.0577)

SVM Training set

2/3

0.314

(0.1074)

0.8715

(0.0352)

0.5779

(0.0706)

0.6931

(0.0209)

0.6718

(0.0264)

0.5928

(0.0433)

0.5989

(0.0438)

Testing set 1/

3

0.3687

(0.1169)

0.8474

(0.0944)

0.5888

(0.1779)

0.7066

(0.0766)

0.6755

(0.0697)

0.608

(0.0678)

0.6081

(0.0629)

XGBoost Training set

2/3

0.3575

(0.0882)

0.7675

(0.0403)

0.4639

(0.0615)

0.679

(0.0253)

0.621

(0.0298)

0.5625

(0.0377)

0.5664

(0.0363)

Testing set 1/

3

0.3961

(0.1046)

0.7901

(0.0815)

0.517

(0.1468)

0.7017

(0.074)

0.65

(0.0592)

0.5931

(0.0582)

0.593

(0.0522)

Penalized logistic regression Training set

2/3

0.5011

(0.0781)

0.7864

(0.0304)

0.5706

(0.0588)

0.7368

(0.017)

0.6847

(0.0267)

0.6437

(0.0373)

0.6471

(0.0384)

Testing set 1/

3

0.5565

(0.1279)

0.7705

(0.0965)

0.5782

(0.1368)

0.756

(0.0894)

0.6904

(0.0728)

0.6635

(0.0722)

0.6635

(0.0687)

Neural Network Training set

2/3

0.5199

(0.0481)

0.7801

(0.0248)

0.5736

(0.053)

0.7412

(0.0221)

0.6865

(0.027)

0.65

(0.0308)

0.6532

(0.0327)

Testing set 1/

3

0.5567

(0.144)

0.7409

(0.107)

0.5524

(0.1407)

0.7503

(0.0837)

0.6755

(0.0739)

0.6488

(0.0769)

0.6488

(0.0734)

Stacking (Using above 6 models) Training set

2/3

0.3384

(0.087)

0.8528

(0.0387)

0.5671

(0.0602)

0.6953

(0.021)

0.6683

(0.027)

0.5956

(0.0354)

0.6007

(0.036)

Testing set 1/

3

0.4123

(0.1322)

0.819

(0.0827)

0.5656

(0.1363)

0.7146

(0.0901)

0.6723

(0.063)

0.6156

(0.0575)

0.6157

(0.0516)

Stacking (Using Penalized logistic regression

and Neural Network)

Training set

2/3

0.5205

(0.0481)

0.78 (0.025) 0.5737

(0.0526)

0.7414

(0.0222)

0.6866

(0.0269)

0.6502

(0.0307)

0.6535

(0.0325)

Testing set 1/

3

0.5602

(0.144)

0.7409

(0.1074)

0.5537

(0.1423)

0.7518

(0.0837)

0.6766

(0.075)

0.6506

(0.078)

0.6505

(0.0746)

Note:

1. Average (se) were calculated for the following model performance: Sensitivity = sensitivity (True Positive Rate) = TP/(TP+FN); Specificity = specificity (True Negative

Rate) = TN/(TN+FP); PPV (Positive Predicted Value) = TP/(TP+FP); NPV (Negative Predicted Value) = TN/(TN+FN); Accuracy (ACC) = (TP+TN)/(TP+TN+FP

+FN); Balanced Accuracy (BA) = (sensitivity+specificity)/2

2. Standard error (se) was calculated based on Rubin’s rule for imputed data. For the se of AUC in testing data, bootstrapping method repeated 1000 times was used to

estimate the within-subject variance.

https://doi.org/10.1371/journal.pone.0299625.t007
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with participants’ clinical and demographic data, data from questionnaires and measurements

from MRI brain imaging data. Our proposed ML pipeline included data pre-processing, multi-

ple imputation for missing values, feature selection based on the top 50 most frequent vari-

ables, predictive modeling using 6 popular ML models plus 2 stacking methods, and

performance evaluation based on repeated cross-validation. Our accuracy reached 83.41%, bal-

ance accuracy reached 82.43%, and AUC reached 0.8257, which were much higher than other

Fig 5. ROC curves comparison across groups based on the stacking model using penalized logistic regression and neural network which had the best

predictive performance from internal cross-validation using training set.

https://doi.org/10.1371/journal.pone.0299625.g005
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published papers’ internal validation results. For example, Chekround et al. [15] used 1949

patients from STAR*D and their clinical, demographic and psychiatric diagnostic symptom

questionnaire to train a predictive model for remission that is defined as a final score of 1-item

self-report QIDS< = 5. The AUC value and accuracy of their model are 0.7 and 64.6% from

internal cross-validation. However, our ML models did not sustain this performance when

externally evaluated, necessitating further investigation.

Some features selected in our model using APAT data were consistent with other studies.

For example, Anxiety, which is factor 4 of HDRS, was a top feature with most frequent rank of

8 for arithmetic sum and 11 for load-weighted sum [54] from all our base ML models. It has

also been shown to be a top ranked feature by other researchers. Top predictors of Benolt

et al.’s predictive model included HDRS scale items and anxiety [55]. Both Iniesta et al. [56]

and Taliaz and his colleagues [16] identified anxiety disorder among their top predictive fea-

tures. Nunez et al. [57] also identified IDAS anxiety score as one of the top predictors. Addi-

tionally, Anxiety makes MDD harder to treat, as when the two are presented together, people

are more resistant to pharmacological treatment [58–60]. However, the top 50 most frequent

features selected by APAT data were much different from that based on 2/3 APAT+EMBARC

data or EMBARC data (see Table A2 of S1 File), which might be the reason why the prediction

results from using EMBARC data as external validation set were not satisfactory.

When building our ML pipeline, we also tried other possible combinations of each step

such as a different number of top ranked features (top 10/15/25/50), different repeated K-fold

CV (5 repeated 3-fold, 5 repeated 4-fold, 10 repeated 5-fold), including other ML models such

as gradient boosting decision tree, and different number of final selected most frequent fea-

tures (20/25/30/40). All prediction performances were similar to the results reported here. We

further added the early weeks’ (week 1 to week 4) HDRS changing rates from the baseline

HDRS scores as additional predictors, and the final prediction results showed slightly but not

significantly improvement on the predictive performances.

When using EMBARC data as external validation data, the prediction results for remission

were not as good as using the same predictive models generated from APAT data. Overfitting

of APAT data could be one of the reasons as this issue may exist in any ML models. In addi-

tion, we compared all the features between APAT data and EMBARC data, where almost all

the features were significantly different between the two datasets even after adjusting for age,

sex, and baseline HDRS 17 (see Table A3 of S1 File). Therefore, the reason why the better

results from APAT study could not be generalized to EMBARC study using the same ML pipe-

line was high likely because of the significant difference between these two datasets. Since the

APAT study was from single site but the EMBARC study was from 4 different sites, we further

examined the site effects by three steps. First, the ROC curves from EMBARC as testing set

were generated by sites, and we noticed the differences among the 4 sites. Second, EMBARC

data with a larger sample size were considered as training set and APAT as testing set. There

was a significantly drop of model performances when using EMBARC as training set with 4

different sites compared with the single site APAT data. Finally, we used the combined APAT

+EMBARC data with 2/3 as training set and 1/3 as testing set. The results from testing set were

close to the results from training set, which indicated the validity of our proposed ML pipeline.

But all the model performances from training set were worse than those from APAT data,

because the 2/3 combined data included 5 sites, which further verified data from multiple sites

generally led to worse performances on predicting remission. Several studies also addressed

the site differences issue. In 2011, Frank et al. [61] evaluated the time to remission in two sites

(Pisa and Pittsburgh) and used multiple efforts to minimize the site differences. For example,

psychiatrists from Pisa were trained in Pittsburgh for one year to ensure the consistency

between sites. However, the time to remission between two types of active treatments was
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significantly different in Pittsburgh but showed non-significant difference in Pisa. Wu et al.
[62] questioned whether the high accuracy in predicting remission achieved by their current

single site data could be generalized to datasets from multiple sites. Similarly, Xu et al. [63]

obtained the highest AUC in predicting antidepressant treatment outcome, 0.7654, from gra-

dient boosting decision tree for a single medical center, but lack the generalization to multi-

centers because of the geography, insurance, and patients from single site might not fully rep-

resent the population at risk for multiple sites. In addition, we examined other effects such as

age, sex, HDRS 17, and HDRS factor 4, but none of the ROC curves by these features were sig-

nificantly different. Therefore, it does not suggest that the predictive performance of the final

predictive model was driven by one specific subgroup defined by these features.

Limitations

One limitation of our study is the small sample size. To address this, we used 5 repeated 4-fold

CV for robust evaluation of our predictor’s performance and compared the results from 6 pop-

ular ML models plus two stacking methods to ensemble predictions from the base ML models.

The fact that our final predictive model had similar or better predictive performance compared

with other reported predictive models shows that our advanced ML pipeline may overcome

the disadvantage of a small training dataset with sample size <100. The overall ML pipeline we

reported here can be used to build a predictive model with any size of training set.

Age is typically found as an important predictor in other studies, however the APAT study

consisted of mostly young adults with half of them between the ages of 18–25. This may

explain why age is not a top predictor in our list, different from what was found by Kautzky

et al. [64] and Taliaz et al. [16]. However, this is a critical age range for depression studies

since this age range is typically when people start to become more independent from parents

and the rates of depression start increasing sharply. Additionally, this dataset lacks information

or is difficult to assess accurately on other clinical features such as family history or the number

of depressive episodes, which may be prognostic factors for remission.
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59. Wiethoff K, Bauer M, Baghai TC, Möller HJ, Fisher R, Hollinde D, et al. Prevalence and treatment out-

come in anxious versus nonanxious depression: results from the German Algorithm Project. J Clin Psy-

chiatry. 2010 Aug; 71(8):1047–54. Epub 2010 Jul 13. https://doi.org/10.4088/JCP.09m05650blu PMID:

20673545

60. Gaspersz R, Nawijn L, Lamers F, Penninx BWJH. Patients with anxious depression: overview of preva-

lence, pathophysiology and impact on course and treatment outcome. Curr Opin Psychiatry. 2018 Jan;

31(1):17–25. https://doi.org/10.1097/YCO.0000000000000376 PMID: 29120914

61. Frank E, Cassano GB, Rucci P, Thompson WK, Kraemer HC, Fagiolini A., et al. Predictors and modera-

tors of time to remission of major depression with interpersonal psychotherapy and SSRI pharmacother-

apy. Psychological medicine. 2011: 41(1), 151–162. https://doi.org/10.1017/S0033291710000553

PMID: 20380782

62. Wu H., Liu R., Zhou J., Feng L., Wang Y., Chen X. et al. Prediction of remission among patients with a

major depressive disorder based on the resting-state functional connectivity of emotion regulation net-

works. Translational Psychiatry. 2022: 12(1), 391. https://doi.org/10.1038/s41398-022-02152-0 PMID:

36115833

63. Xu Z., Vekaria V., Wang F., Cukor J., Su C., et al. Using Machine Learning to Predict Antidepressant

Treatment Outcome from Electronic Health Records. Psychiatric Research and Clinical Practice. 27

Mar 2023. https://doi.org/10.1176/appi.prcp.20220015 PMID: 38077277

64. Kautzky A, Dold M, Bartova L, Spies M, Vanicek T, Souery D, et al. Refining Prediction in Treatment-

Resistant Depression: Results of Machine Learning Analyses in the TRD III Sample. J Clin Psychiatry.

2018 Jan/Feb; 79(1):16m11385. https://doi.org/10.4088/JCP.16m11385 PMID: 29228516

PLOS ONE Predicting remission in participants with major depressive disorder using neuroimaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0299625 March 28, 2024 26 / 26

https://doi.org/10.1371/journal.pone.0253023
https://doi.org/10.1371/journal.pone.0253023
http://www.ncbi.nlm.nih.gov/pubmed/34181661
https://doi.org/10.1176/appi.ajp.2007.06111868
http://www.ncbi.nlm.nih.gov/pubmed/18172020
https://doi.org/10.4088/JCP.09m05650blu
http://www.ncbi.nlm.nih.gov/pubmed/20673545
https://doi.org/10.1097/YCO.0000000000000376
http://www.ncbi.nlm.nih.gov/pubmed/29120914
https://doi.org/10.1017/S0033291710000553
http://www.ncbi.nlm.nih.gov/pubmed/20380782
https://doi.org/10.1038/s41398-022-02152-0
http://www.ncbi.nlm.nih.gov/pubmed/36115833
https://doi.org/10.1176/appi.prcp.20220015
http://www.ncbi.nlm.nih.gov/pubmed/38077277
https://doi.org/10.4088/JCP.16m11385
http://www.ncbi.nlm.nih.gov/pubmed/29228516
https://doi.org/10.1371/journal.pone.0299625

