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Due to its renewability, eco-friendliness, and cost-effectiveness, biochar is a
promising alternative to fossil fuel-based carbon for electrode material
application in supercapacitors. However, pristine biochar often exhibits poor
structure and low activity, which strongly inhibit its commercial utilization.
N-doping is an efficient way to improve the electrochemical performance of
biochar by enhancing the conductivity and surfacewettability that further induce a
pseudo-capacitance effect. Compared with external doping, the synthesis of N
self-doped biochar from natural N-rich biomass without using external N
precursors, which are harmful and costly, has attracted increasing attention.
Few reviews of N-doped biochar applications in supercapacitors are available,
and studies of N self-doped biochar are still scarce. This paper reviews the
developments over the past 10 years on the preparation, activation, and
application of N self-doped biochar in supercapacitors. Notably, the evolution
of N-functionalities during N self-doped biochar production with or without
activating agents was analyzed. The relationships between N content and the
specific capacitance and the contribution of N self-doping-induced pseudo-
capacitance to the total specific capacitance are also discussed. Finally, the
challenges and the prospects of N self-doped biochar applications in
supercapacitors are proposed.
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1 Introduction

The excessive consumption of fossil fuels (coal, gas, and oil) gives rise to energy
crisis, environmental pollution, and global warming (Parsimehr et al., 2022; Zhang
et al., 2022). According to a statistical report (IPCC, 2022), the average annual
emission levels of the last decade (2010–2019) were higher than in any previous
decade for each group of greenhouse gases (GHGs). Compared to 1990, CO2, CH4, and
N2O from fossil fuel and industry in 2019 grew by 67%, 29%, and 33%, respectively.
Due to this, renewable energy, such as solar energy, wind energy, and hydropower,
developed rapidly in the past decades. However, in comparison to fossil fuels, these
renewable energies have the main disadvantage of intermittency (Li et al., 2021)
because they fluctuate with seasons, circadian cycles, and weather, leading to the
fluctuation of generating capacity. Therefore, to ensure the security of the power grid,
energy storage facilities are required when using solar and wind energy for power
generation.
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Supercapacitors are a promising energy storage technique because
of their high power density, rapid charging/discharging rate, long cycle
life, excellent reversibility, etc. (Yan et al., 2014). However, lower energy
density greatly limits their large-scale utilization. The electrode material
is the critical factor affecting the energy density of supercapacitors (Bo
et al., 2019; Huang et al., 2019). Thus, improving the electrochemical
properties of electrode materials is the most convenient and effective
way to increase energy density. To date, carbon-basedmaterials, such as
graphene, activated carbon, carbon nanotube, and carbon aerogel, are
widely used as electrode materials in supercapacitors because of their
high conductivity, large surface area, tunable porosity, superior stability,
and enriched electroactive sites (Zhu and Xu, 2020;Wesley et al., 2022).
However, these carbon materials are mainly derived from fossil
materials using complex and costly procedures that are greatly
harmful to the environment and human health (Zhu and Xu, 2020).
Thus, there is an urgent need to explore an eco-friendly, sustainable,
and cost-efficient resource for carbon material production.

As the only carbon-based renewable energy resource, biomass is
considered an alternative to fossil fuels because it can not only be
used for power generation and heat supply but can also be converted
into syngas, bio-oil, and biochar products by thermochemical and
biochemical techniques. Because biomass is derived from the
photosynthetic process of CO2 and H2O in nature, almost zero
or even negative CO2 emissions can be achieved during its cycle life.
Due to the renewability, abundance, and accessibility of biomass
feedstock, biochar is considered an effective electrode material for
supercapacitors (Liang et al., 2018; Cuong et al., 2021). There are
also other advantages for biochar application as electrode material,
such as its physical and chemical stability, large surface area, and
developed porous structure, which are beneficial to ion transport
(Tang et al., 2017), the abundant surface functional groups (e.g., N-,
O-, S-, and P-containing functional groups), and the ability to deal
with solid waste in large quantities (Cuong et al., 2021). Moreover,
biochar is low cost because it is often themain product from biomass
or a by-product when biomass is used to produce bio-oil or syngas
(Zhu and Xu, 2020). Meyer et al. also reported that the cost of
biochar production is far less than that of activated carbon and
graphitic carbon (Meyer et al., 2011).

Various techniques have been developed for biochar production,
such as pyrolysis, hydrothermal carbonation, torrefaction, and
microwave-assisted pyrolysis. However, biochar in its raw form
often exhibits poor porous structure and low activity that is adverse
to its utilization in supercapacitors (Cuong et al., 2021). To further
improve the electrochemical performance, modification of biochar
is essential. To date, two methods are commonly used: 1) activation
by physical and chemical activators to defuse the porous structure of
biochar (Hu et al., 2022). The physical activators refer to CO2, H2O,
and air, while the frequently used chemical activators include KOH
(Qin et al., 2022), H3PO4 (Li et al., 2022), and ZnCl2 (Lima et al.,
2022); 2) doping of heteroatoms such as N, P, and S to enrich surface
functional groups (Li et al., 2022; Xia et al., 2022). Among these
heteroatoms, N-doping is most implemented due to easily available
and low-cost N sources such as NH3, urea, and melamine (Bai et al.,
2021; Mehdi et al., 2022; Yuan et al., 2022). Doping of N heteroatoms
can enhance conductivity and surface wettability, and induce a
pseudo-capacitance effect of the carbon material, thereby
improving its energy/power density with versatile properties
(Gopalakrishnan and Badhulika, 2020). Thus, the specific

capacitance of N-doped biochar is the sum of the electrical
double-layer capacitance and the pseudo-capacitance, significantly
improving the performance of supercapacitors. More importantly,
doping of N atoms can reduce lattice mismatching and increase
electronic conductivity because N is the neighboring element of
carbon in the periodic table (Gopalakrishnan and Badhulika, 2020).
Usually, to achieve a better modification effect, these two methods
are often implemented in combination with each other.

All kinds of biomass can be employed as the feedstock for biochar
production, including agricultural waste (Lang et al., 2021; Jiang et al.,
2022), tea waste (Wesley et al., 2022), woody biomass (Ma et al., 2021;
Chen et al., 2022), seeds (Liang et al., 2021), animal waste (Qin et al.,
2022; Wang et al., 2022), fungal waste (Li et al., 2021), vegetables (Li
et al., 2022; Xue et al., 2022), and starch (Li et al., 2020; Yuan et al.,
2021. Among the various types of biomass, it is worth noting that
some naturally have a higher N content, for example, algae (Yuan
et al., 2022), mushrooms (Xue et al., 2022), spent coffee ground
(Sangprasert et al., 2022), bean pulp (Ding et al., 2021),
pharmaceutical drug residues (Zhang et al., 2021; Chen et al.,
2022), amino acids (Guo et al., 2021), etc. The bio-oil and syngas
production from these N-rich biomasses usually contain high levels of
N-containing components, leading to the molecular oligomerization,
viscosity, and emission of NOx during subsequent combustion (Jiang
et al., 2022). Therefore, N self-doped biochar is a preferentially
expected product for N-rich biomass utilization. Compared with
the co-pyrolysis of biomass and extra N precursors, the self-doping
strategy via pyrolyzing N-rich biomass is eco-friendly and cost-
effective because the use of extra N sources is avoided (Wang
et al., 2020; Liu et al., 2022). By comparing the environmental
performance of a biochar aerogel-based electrode (BA-electrode)
and a graphene oxide aerogel-based electrode (GOA-electrode)
using the life cycle assessment method, Jiang et al. (2021) found
that the life cycle global warming potential for the BA electrode was
lower than that of GOA electrode, with a reduction of 53.1–68.1%.
Compared to a GOA electrode, the environmental damages of a BA
electrode were greatly decreased by 35.8–56.4%, 44.9–62.6%, and
87.0–91.2% for human health, ecosystems, and resources, respectively.
Due to these advantages, producing N self-doped biochar using
N-rich biomass feedstocks is attracting increasing attention.
Various strategies for N self-doped biochar production have been
reported. Understanding the existing strategies and the performance
of supercapacitors using N self-doped biochar as the electrode
material is of great significance to future research. In this study,
the latest developments in the preparation, activation, and application
of N self-doped biochar in supercapacitors are reviewed. Notably, the
evolution of N-functionalities during N self-doped biochar
production with or without activating agents and the impact of N
self-doping on the electrochemical performance are discussed.
Although numerous reports with respect to biochar utilization in
supercapacitors are available, reviews on N self-doped biochar for
supercapacitor application are still scarce.

2 Preparation of N self-doped biochar

The preparation of N self-doped biochar usually involves some
or all of the following steps: 1) pretreatment of the raw biomass, 2)
pre-carbonization or pre-activation in mild conditions, 3) pyrolysis/
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carbonization or activation with one or more step(s), 4) post-
treatment of the solid product. Because the activation is often
implemented simultaneously with pre-carbonization or pyrolysis,
the activation is introduced together with the preparation
procedures in this review.

2.1 Pretreatment methods

The inorganic elements naturally occurring in biomass are
considered to be unfavorable to the electrochemical performance
of biochar. Zhu et al. reported that excessive residual metal content
in algal biomass plays the role of “dead mass,” resulting in a less-
developed porous structure (Zhu et al., 2018). Therefore, raw
material is often pretreated to remove the impurities before
carbonization. Washing with acetone (Fu et al., 2018), ethanol
(Yan, 2020), deionized water (Sinha et al., 2020), distilled water
(Yan et al., 2020), or ultrapure water (Liu et al., 2017) or washing/
soaking in acid solutions such as HCl (Wen et al., 2019), H2SO4

(Sattayarut et al., 2019), HNO3, and acetic acid/H2O2/HF/NaClO2

(Wang et al., 2019), or the combination of them, are most
frequently performed. It was reported that washing with water
(H2O-CC), formic acid (FA-CC), acetic acid (AA-CC), oxalic acid
(OA-CC), and propionic acid (PA-CC) showed significant effects
on the pyrolysis characteristic of corn cob (CC) (Figure 1) (Liu
et al., 2022). When acid washing is employed, water washing is
required to remove the residual acids. Then, the washed biomass is
dried in an oven at 60–110 °C or freeze-dried (Li et al., 2019; Zhu
et al., 2019) to remove the extra moisture. The washed and dried
biomass is cut into small pieces or ground into powders with the
desired sizes manually in a mortar or by an automatic mill.
However, the washing of biomass is still under debate because
some researchers (Gao et al., 2021; Qin et al., 2022) have found that
the presence of the inorganics in the raw biomass actually
promoted the development of pores. This might be attributed
to the diversity of biomass feedstock and types of inorganics. Thus,
the impact of pretreatment on the performance of biochar is still

unclear. It is necessary to clarify the effects of inorganics on the
physiochemical properties of biochar so that the pretreatment of
the feedstock can be rationally performed.

2.2 Pre-carbonization/pre-activation

Hydrothermal carbonization is a mild thermochemical
conversion process requiring a liquid environment under
autogenous pressures (2–10 MPa) at 150–300°C. It is mainly
explored to deal with wetland plants and biomass with high
moisture content to produce bio-oil and hydrochar (Soroush
et al., 2022). It consumes less energy than pyrolysis because it
does not require a pretreatment step (MacDermid-Watts et al.,
2020; Stobernack et al., 2020). Generally, the hydrochar exhibits
low surface area and poor porous structure. For example, the
hydrochar derived from cow manure obtained its largest surface
area and pore volume of only 6.114 m2/g and 0.021 cm3/g,
respectively (Liu et al., 2019). However, due to the high
hydrochar yield of 40–70 wt% (Zhu and Xu, 2020),
hydrothermal treatment is sometimes employed as a pre-
carbonization or pre-activation strategy before pyrolysis to yield
carbon precursors for N self-doped biochar production, as shown

FIGURE 1
(A) Thermogravity (TG) and (B) differential thermogravimetry (DTG) curves for raw and washing pretreated samples (Liu et al., 2022).

FIGURE 2
Typical procedure for hydrothermal treatment combined with
pyrolysis.
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in Figure 2 (Si et al., 2013; Rong et al., 2019; Wen et al., 2019; Hu
et al., 2022). A hydrothermal process also has the ability to insert or
stabilize foreign atoms into the carbon matrix (Yu et al., 2021;
Sangprasert et al., 2022) and etch pores to a certain extent due to
the hydrolyzation of hemicellulose and cellulose (Lei et al., 2021;
Hu et al., 2022). Thus, modification of functional groups and the
porous structure can be achieved by changing the solvent medium
(Rawat et al., 2022). The formation of a pore structure and carbon
skeleton is more beneficial to subsequent carbonization/activation
compared to the parent biomass (Lei et al., 2021). Figure 3 displays
the comparison of the morphologies of the peanut shell-derived
biochar products prepared by Na2CO3–K2CO3 activation with/
without hydrothermal pre-treatment. The surface structure of
biochar was significantly enhanced by hydrothermal pre-
treatment.

2.3 Stepwise pyrolysis

Pyrolysis, which is performed in an oxygen-limited
atmosphere at elevated temperatures, is a well-developed and
widely used thermochemical conversion technique for biochar
production due to its advantages of flexibility, speed, economy,
eco-friendliness, and large capacity (Yuan et al., 2021). Pyrolysis
is traditionally divided into slow, fast, and flash pyrolysis
according to the temperature, residence time, and heating
rate (Li et al., 2020; Zhou et al., 2021). Slow pyrolysis refers
to the pyrolysis process performed at temperatures lower than
500 °C with a heating rate <10 °C/min and a residence time of

several hours to days. Fast pyrolysis is often conducted at a
temperature ranging from 500 °C to 900 °C, with a heating rate of
10–100 °C/min. The residence time assigned to fast pyrolysis is
less than 10 s; however, it often varies from a few minutes to
hours for biochar production. Flash pyrolysis, which is
performed at a temperature of around 1,000 °C, with a
heating rate >1,000 °C/min and a residence time <2 s, is
explored, in particular for bio-oil production. For biochar
preparation, slow pyrolysis is preferred due to the higher
biochar yield of >30 wt%, followed by fast pyrolysis with a
biochar yield of 10–12 wt%.

Considering the preparation of N self-doped biochar, one-step
and two-step pyrolysis procedures are frequently used. During one-
step pyrolysis (Figure 4), the pretreated biomass (Gao et al., 2015;
Liu et al., 2017; He et al., 2019; Yu et al., 2019; Zhang et al., 2019; Sun
et al., 2020) or the mixture of biomass and activating reagents (Chen
et al., 2019; Lian et al., 2019; Zhao et al., 2020) is directly pyrolyzed in
a furnace. For the two-step method, the pretreated biomass is first
pre-carbonized and then activated with reagents (Figure 5A) (Zou
et al., 2019; Biegun et al., 2020; Yan, 2020), carbonized after pre-
activation (Figure 5B) (Wen et al., 2019), or successively pyrolyzed
without an activator (Figure 5C) (Huang et al., 2018; Ma et al., 2019).
Generally, the first step of the successive pyrolysis is also considered
a pre-carbonization process (Wang and Liu, 2015). Pre-
carbonization is reported to have the ability to remove impurities
effectively and improve activation efficiency with reduced
consumption of the activator (Jiao et al., 2022). In addition to
these methods, a three-step strategy involving pre-carbonization,
hydrothermal treatment, and activation was also implemented for N
self-dope biochar production from walnut shells (Wang et al., 2018)
and Enteromorpha prolifera (Ren et al., 2018).

Microwave-assisted pyrolysis is conducted using a microwave
furnace with an electromagnetic spectrum frequency that ranges
from 0.3 to 300 GHz and a wavelength that ranges from 1,000 to
1 mm (Sun et al., 2022). Microwave pyrolysis heats the samples
uniformly based on the resonation of the microwave radiation
frequency and that of water molecule vibration in the target
samples. Therefore, microwave pyrolysis is typically appropriate
to process biomass with a high moisture content. Microwave heating
also has the advantages of energy efficiency and fast response (Zhang
et al., 2022). A two-step pyrolysis procedure involving carbonization
and microwave-assisted activation was employed by Foo and
Hameed (2013) to prepare biochar from oil palm shells. As
shown in Figure 6, the oil palm shell was first carbonized at
700 °C, and the produced char was then activated with KOH in a
microwave oven.

Plasma is another effective technology to process material under
mild conditions, with the advantages of being chemical-free and
simple. For example, non-thermal plasma processing was applied to
modify the biochar derived from bamboo shoot shells before it was
used in contaminant removal and supercapacitor applications
(Zhou et al., 2022). The biochar after plasma treatment exhibited
enhanced hydrophilicity, larger surface area, and higher N/O
content, leading to higher absorption capacity and the
improvement of electrochemical performance.

Conventional pyrolysis, microwave-assisted pyrolysis, and
plasma treatment are all effective techniques for N self-doped
biochar preparation. Conventional pyrolysis in a heating

FIGURE 3
SEM images of peanut shell-derived biochar: (A) carbonized in
molten Na2CO3–K2CO3 salt without hydrothermal pre-treatment, (B)
hydrothermal pre-treatment for 12 h before carbonization, (C, E)
hydrothermal pre-treatment for 24 h before carbonization, and
(D, F) hydrothermal pre-treatment for 48 h before carbonization (Lei
et al., 2021).
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furnace with a one-step or two-step strategy is still the mainstream
method, while microwave-assisted and plasma pyrolysis are rarely
reported.

2.4 Posttreatment

After these steps, the obtained N self-doped biochar is washed
with dilute acid (HCl, H2SO4, HNO3, etc.) solution to remove the
inorganic impurities and subsequently washed by deionized/
distilled/ultrapure water until neutral (Raj et al., 2018; Xu et al.,
2018). Finally, the purified biochar is dried for further investigation
of its electrochemical performance.

3 N self-doped biochar applications in
supercapacitors

N self-doped biochar is produced from naturally N-rich
biomass, including plants, animals, foods, algae, organic wastes,
protein/amino acids, and fungus, as shown in Figure 7. Among these
types, N-rich plant-based biomass is the most commonly used for N
self-doped biochar production. Alkali hydroxides, especially KOH,

FIGURE 4
One-step method commonly used for N self-doped biochar production.

FIGURE 5
Two-stepmethod commonly used for N self-doped biochar production. (A) pre-carbonization and activation, (B) pre-activation and carbonization,
(C) successively pyrolysis.

FIGURE 6
Two-step procedure of carbonization, followed by microwave
activation.
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are the favorite activating reagents due to their excellent pore etching
ability, the mechanism of which is described as follows. First, KOH
reacts with carbon to generate H2 and CO2 and simultaneously
forms K2CO3 (R1). As the temperature reaches 700 °C, K2CO3

decomposes into K2O and CO2 (R2). Then, CO2 reacts with carbon
to form CO (R3). With the continuous increase of temperature, both
K2CO3 and K2O are reduced, accompanied by the release of CO and
K vapor (R4 and R5). Finally, the gases and K vapor pass through the
carbon matrix to activate the pore formation.

6KOH + 2C → 2K + 3H2 + 2K2CO3 (R1)
K2CO3 → K2O + CO2 (R2)

CO2 + C → 2CO (R3)
K2CO3 + 2C → 2K + 3CO (R4)
K2O + C → 2K + CO (R5)

3.1 Plant-based N self-doped biochar

The N-rich plant-based biomass involves leaves, flowers,
stems, barks, fruits, seeds, and roots of plants, as well as the
derived straws that contain enriched protein or vitamins. For
example, N-doping porous carbon fabricated from quinoa with
KOH activation exhibited a special capacitance of 330 F/g at a
density of 1 A/g (Sun et al., 2020). N, S co-doped hierarchical
porous carbon was fabricated from ginkgo leaves via
carbonization, followed by NaOH/KOH activation (Zhang
et al., 2020). Due to the high specific surface area SSA
(975 m2/g) and higher heteroatom content (1.88% N and
1.87% S), the derived carbon exhibited a high specific
capacitance of 333.4 F/g at 0.1 A/g. Jiao et al. reported a
hierarchical porous biochar (1.7% N) from soybean straw
produced by carbonization and mild activation with KOH

(Jiao et al., 2022). The optimal sample exhibited a specific
capacitance of 380.5 F/g at 0.5A/g. Protein-rich soybeans were
also converted into a heteroatom self-doped biochar with KOH
activation (Lin et al., 2018; Yan et al., 2020; Yu et al., 2021). Other
plants used to prepare N self-doped biochar involving KOH
activation for supercapacitor application include corn silk
(Zhou et al., 2020), Broussonetia papyrifera stem bark (Wei
et al., 2015), Moringa oleifera branches (Cai et al., 2016),
walnut shells (Wang et al., 2018), longan shell (Yan, 2020),
broad bean shells (Xu et al., 2015), longan pulp (Wang et al.,
2020), lotus leaves (Liu et al., 2020), Viburnum sargentii leaves
(Zhang et al., 2019), Samanea saman leaves (Sattayarut et al.,
2019), willow catkins (Wang et al., 2015), tobacco rods (Zhao
et al., 2016), fallen Camellia flowers (Guo et al., 2017), rose
multiflora (Chen et al., 2018), pomelo peel (Fu et al., 2018), mung
bean husk (Song et al., 2019), cotton seed husks (Chen et al.,
2018), bamboo shoot shells (Han et al., 2018), metasequoia fruit
(Jia et al., 2019), and soybean root (Guo et al., 2016), as shown in
Table 1.

On account of the strong corrosivity of KOH,moderate activating
reagents such as carbonates and chlorides are considered to be the
alternatives. Foxtail grass seeds were carbonized at 550–750 °C with
NaHCO3/KHCO3 to prepare a self-doped biochar (Liang et al., 2021).
Benefiting from the large SSA of 819 m2/g and a high N content of
2.52 at.%, the as-prepared biochar displayed a high gravimetric
capacitance of 358.0 F/g at 0.5 A/g. N self-doped carbon materials
were also prepared from eucalyptus leaves (Mondal et al., 2017) and
fallen flowers of Magnolia denudata (Qi et al., 2018) with KHCO3

activation. A heteroatom self-doped porous biochar (1.02 at% N)
from peanut shells was prepared via hydrothermal carbonization,
followed by Na2CO3–K2CO3 activation (Lei et al., 2021), showing a
specific capacitance of 447 F/g at 0.2 A/g. Pine pollen was pyrolyzed
with MgCO3, and the derived carbon possessed a high specific
capacitance of 419.6 F/g at 1A/g (Wan et al., 2019). Lily was

FIGURE 7
N-rich biomass involved in existing research.
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TABLE 1 Plant-based N self-doped biochar applications in supercapacitors.

Biomass Pre-treatment Preparation method N
content

C Es
(Wh/kg)

Ws
(W/kg)

Ref

Quinoa Ethanol/deionized
water washing

Pre-carbonization followed by KOH
activation

1.97% 330 F/g at
1 A/g

22 625 Sun et al. (2020)

Ginkgo leaves Deionized water
washing

Pre-carbonization followed by KOH/
NaOH activation

1.88% 333.4 F/g at
0.1 A/g

– – Zhang et al.
(2020)

Soybean straw Deionized water
washing

Pre-carbonization followed by KOH
activation

1.7% 380.5 F/g at
0.5 A/g

8.95 25 Jiao et al. (2022)

Soybean Deionized water
washing

Pre-carbonization, hydrothermal
treatment, and KOH activation

3.15 at % 685.1 F/g at
0.5 A/g

41.8 750 Yu et al. (2021)

Corn silk – Pre-carbonization followed by KOH
activation

2.07% 291.2 F/g at
0.1 A/g

5.4 5,000 Zhou et al.
(2020)

Broussonetia
papyrifera stem bark

– Hydrothermal treatment with KOH
followed by carbonization

1.0 at % 320 F/g at
0.5 A/g

– – Wei et al. (2015)

Moringa oleifera
branches

– Impregnation with KOH followed by
carbonization

1.3% 355 F/g at
0.5 A/g

20 178.6 Cai et al. (2016)

Walnut shells – Pre-carbonization, hydrothermal
treatment with KOH followed by

carbonization

0.89% 462 F/g at
1 A/g

42.8 1,249 Wang et al.
(2018)

Broad bean shells – KOH activation 2.0% 202 F/g at
0.5 A/g

– – Xu et al. (2015)

Longan pulp – hydrothermal treatment, carbonization,
and KOH/KCl activation

1.1% 380 F/g at
0.5 A/g

5.3 125.7 Wang et al.
(2020)

Lotus leaves Deionized water
washing

Pre-carbonization followed by KOH
activation

1.47 at % 523 F/g at
1 A/g

– – Liu et al. (2020)

Viburnum sargentii
leaves

Ethanol/deionized
water washing

Pre-carbonization followed by KOH
activation

0.53 at % 612.8 F/g at
0.5 A/g

25.6 450 Zhang et al.
(2019)

Samanea saman
leaves

H2SO4/deionized water
washing

KOH activation 4.6 at % 179 F/g at
0.5 A/g

78.5 829 Sattayarut et al.
(2019)

Willow catkins Deionized water
washing

Impregnation with KOH followed by
carbonization

2.51 wt% 340 F/g at
0.1 A/g

– – Wang et al.
(2015)

Tobacco rods – Hydrothermal carbonization followed by
KOH activation

1.23 wt% 286.6 F/g at
0.5 A/g

31.3 11,800 Zhao et al.
(2016)

Rose multiflora Deionized water
washing

Pre-carbonization followed by KOH
activation

1.2 at % 340 F/g at
0.5 A/g

52.6 700 Chen et al.
(2018)

Pomelo peel Acetone/deionized
water washing

Pre-carbonization followed by KOH
activation

4.47 at % 208.7 F/g at
1 A/g

7.25 260.8 Fu et al. (2018)

Mung bean husks – Pre-carbonization followed by KOH
activation

0.73 at % 353 F/g at
1 A/g

20.4 872 Song et al.
(2019)

Cotton seed husks Deionized water
washing

KOH activation 2.56 at % 238 F/g at
0.5 A/g

10.4 300 Chen et al.
(2018)

Bamboo shoot shells Ethanol/deionized
water washing

KOH activation 1.9 wt% 223.21 F/g at
1 A/g

7.75 327.87 Han et al. (2018)

Metasequoia fruit – Pre-carbonization followed by KOH
activation

2.42 at % 326 F/g at
0.5 A/g

7.6 129 Jia et al. (2019)

Soybean root Ethanol/deionized
water washing

Pre-carbonization followed by KOH
activation

1.8 at % 276 F/g at
0.5 A/g

100.5 4,353 Guo et al. (2016)

Foxtail grass seeds Distilled water washing NaHCO3 and KHCO3 activation 2.52 at % 358 F/g at
0.5 A/g

– – Liang et al.
(2021)

Eucalyptus leaves Deionized water
washing

KHCO3 activation 1.71 at % 372 F/g at
0.5 A/g

– – Mondal et al.
(2017)

(Continued on following page)
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foamed and activated in KMnO4 hot solution, obtaining an N, O co-
doped porous carbonmaterial with a specific capacitance of 352 F/g at
0.5 A/g (Wang et al., 2022). KMnO4 was also employed as the
activating reagent for spring onion peel-derived biochar (Zhao
et al., 2020), the specific capacitance of which was 490.7 F/g at
1.0 A/g and the energy density was 92.0Wh/kg at a power density
of 1800W/kg in supercapacitors. KCl and NaCl were utilized as
activators when producing N self-doped biochar from clover (Wang
et al., 2017; Wang et al., 2018) and flower petals of Salvia splendens
(Liu et al., 2018).

A comparison of KOH and other activating reagents was also
performed. For example, chemically and physically activated
pyrolysis of chestnut was compared using KOH and CO2 as
activators, respectively (Januszewicz et al., 2020). The KOH-
activated sample exhibited much better electrochemical
performance due to the higher SSA and well-developed porosity.
N self-doped porous carbons were synthesized using vitamin-
enriched carrots and an Na2SiO3 activator (Du et al., 2021).
Na2SiO3 showed a better activation performance than KOH,
leading to a high capacitance of 268 F/g at 1 A/g for the derived
biochar.

Without using any activating reagents, He et al. reported an N
self-doped biochar obtained from the direct calcination of celery, the
capacitance of which reached 245 F/g (He et al., 2019). Kapok fiber
(Wang et al., 2018) and Perilla frutescens (Liu et al., 2017) were also
directly pyrolyzed to synthesize an N self-doped biochar for
supercapacitors.

3.2 Animal-based N self-doped biochar

The preparation and application of animal-based N self-doped
biochar in supercapacitors are summarized in Table 2. Waste shrimp
shells that contain N-rich poly-b (1/4)-N-acetyl-D-glucosamine were
expected to be an excellent precursor for N self-doped carbon. For
example, shrimp shell-derived carbon using hydrothermal treatment
with KOH and carbonization obtained a specific capacitance of 239 F/
g at 0.5 A/g (Mondal et al., 2017). Mantis shrimp shells were directly
carbonized at different temperatures, and the biochar derived at
750 °C demonstrated a high specific capacitance of 201 F/g at a
current density of 1 A/g due to the large SSA of 401 m2/g and
high N content (8.2 wt%) (Huang et al., 2021).

TABLE 1 (Continued) Plant-based N self-doped biochar applications in supercapacitors.

Biomass Pre-treatment Preparation method N
content

C Es
(Wh/kg)

Ws
(W/kg)

Ref

Fallen flowers of
Magnolia

– Pre-carbonization followed by KHCO3

activation
0.97 wt% 302.7 F/g at

0.5 A/g
7.0 100 Qi et al. (2018)

Peanut shell Washing Hydrothermal carbonization followed by
Na2CO3–K2CO3 activation

1.02 at % 447 F/g at
0.2 A/g

12.75 50 Lei et al. (2021)

Pine pollen – MgCO3 activation 3.13 at % 419.6 F/g at
1 A/g

34.9 181 Wan et al.
(2019)

Lily Ethanol/deionized
water washing

KMnO4 hot solution treatment followed
by carbonization

3.31 at % 352 F/g at
0.5 A/g

23.82 700 Wang et al.
(2022)

Spring onion peel Ethanol/deionized
water washing

KMnO4 hot solution treatment followed
by carbonization

1.1 at % 490.7 F/g at
1 A/g

92 1800 Zhao et al.
(2020)

Clover – Hydrothermal treatment with KCl
followed by carbonization

2.59 at % 451 F/g at
0.5 A/g

10.7 125 Wang et al.
(2018)

Clover – KOH activation 2.55 at % 436 F/g at
1 A/g

58.4 500 Wang et al.
(2017)

Flower petals of
Salvia splendens

Ethanol/deionized
water washing

Impregnation with NaCl followed by
carbonization

2.32 at % 294 F/g at
1 A/g

20.9 467.9 Liu et al. (2018)

Chestnut – Pre-carbonization followed by KOH
activation

2.63 wt% 160 F/g at
1 A/g

3.12 2030 Januszewicz
et al. (2020)

Carrots – Na2SiO3 activation 3.4 at % 268 F/g at
1 A/g

– – Du et al. (2021)

Celery Washing Direct pyrolysis 2.5 at % 245 F/g at
1 A/g

10.12 225.7 He et al. (2019)

Kapok fiber NaOH solution/
deionized water

washing

Direct pyrolysis 0.76 wt% 283 F/g at
1 A/g

– – Wang et al.
(2018)

Perilla frutescens
leaves

Ultrapure water
washing

Direct pyrolysis 1.7 at % 270 F/g at
0.5 A/g

14.8 490 Liu et al. (2017)

C is the maximum specific capacitance of N self-doped biochar in a three-electrode system.

Es and Ws are the maximum energy density and power density of the assembled supercapacitor, respectively.
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Animal bone is a natural composite composed of organic
collagen. It is rich in C/N elements and can be used as the C/N
source to form N self-doped carbons. It is also a source of inorganic
hydroxyapatite that disperses homogeneously within the bone as a
natural template (Shao et al., 2017). The cattle bone-derived carbon
possessed an ultrahigh SSA (2,203 m2/g) with meso- and
macropores, a high N content (2.3%), and a good specific
capacitance (Shao et al., 2017). He et al. reported an N/O co-
doped carbon from cattle bones with a large SSA (2,520 m2/g), a
high content of N (1.56%) and O (10.2%), and a large specific
capacity (435 F/g at 0.1 A/g) (He et al., 2017). By simultaneous
pyrolysis and activation, pork bone, blackfish bone, and eel bone-
derived carbon, which had a higher ratio of micropore surface area
and N content, exhibited enhanced specific capacitance (Niu et al.,
2019).

N/P co-doped porous carbon was prepared from silkworm
cocoons and phytic acid by the self-activation approach,
achieving a gravimetric capacitance of 317 F/g at 1 A/g (Wang
et al., 2019). After sufficient soaking with KOH solution, the beehive
was then calcined to produce a multilevel gradient structural N/S co-
doped carbon (Wang et al., 2020). The obtained carbon materials
exhibited a best capacitive capability of 296.1 F/g at a current density
of 1 A/g. Human hair, rich in keratin, was carbonized with KOH,
ZnCl2, and H3PO4. The KOH-activated biochar showed the best
electrochemical performance with an outstanding specific
capacitance of 999 F/g at a current density of 1 A/g (Sinha et al.,

2020). After treatment with KOH, fish skin, primarily composed of
collagen, such as glycine, proline, alanine, and methionine, was
converted into ternary-doped carbon nanosheets (Niu et al., 2018),
with a gravimetric capacitance of 438 F/g at 0.1 A/g. Using pig nail as
N-rich biomass, a porous carbon was fabricated by carbonization
and KOH activation. The supercapacitor derived from this product
exhibited a remarkable energy density of 29.43 Wh/kg (Tang et al.,
2019). An N-enriched biochar was fabricated from the natural
casing, an inherently tough translucent film consisting of fat and
protein, and exhibited a desirable SSA (3,100 m2/g), high N content
(6.34 at.%), and high specific capacitance (307.5 F/g at 0.5 A/g) (Xu
et al., 2018). Porcine bladders were also processed with the same
strategy (Wang et al., 2019). The derived carbon material exhibited
large SSA (1881.7 m2/g), high N content (5.38%), and, consequently,
high specific capacitance (322.5 F/g at 0.5 A/g).

3.3 Food-based N self-doped biochar

Eggs, beancurd, and milk, which are rich in protein and can be
used as human food, are assigned to N-rich food-based biomass.
Table 3 shows the details of the preparation and application of food-
based N self-doped biochar in supercapacitors. A two-step method
involving carbonization and KOH activation was employed to
synthesize carbon materials from egg white (Zhu et al., 2019).
The derived carbon showed a high SSA of 2,918 m2/g and a high

TABLE 2 Animal-based N self-doped biochar applications in supercapacitors.

Biomass Pre-treatment Preparation method N
content

Cmax Es
(Wh/kg)

Ws

(W/kg)
Reference

Shrimp shells Deionized water
washing

Hydrothermal treatment with KOH
followed by carbonization

2.86% 239 F/g at
0.5 A/g

– – Mondal et al.
(2017)

Mantis shrimp
shell

Deionized water
washing

Direct pyrolysis 8.2 wt% 201 F/g at
1 A/g

– – Huang et al.
(2021)

Cattle bone – Pre-carbonization followed by KOH
activation

2.3% 240 F/g at
5 A/g

75 3,750 Shao et al. (2017)

Cattle bone – Pre-carbonization followed by KOH
activation

1.56% 435 F/g at
0.1 A/g

30.3 341 He et al. (2017)

Blackfish bone Ethanol washing KOH activation 6.3 at % 302 F/g at
0.5 A/g

7 300 Niu et al. (2019)

Silkworm
cocoon

– Phytic acid activation 3.65% 317 F/g at
1 A/g

19.6 350 Wang et al.
(2019)

Beehive – KOH activation 7.3 at % 296.1 F/g at
1 A/g

– – Wang et al.
(2020)

Human hair Deionized water
washing

Pre-carbonization followed by KOH
activation

3.16 at % 999 F/g at
1 A/g

32 325 Sinha et al.
(2020)

Fish skin Deionized water
washing

Hydrothermal treatment with KOH
followed by carbonization

8.18% 438 F/g at
0.1 A/g

12.5 Wh/L 24 W/L Niu et al. (2018)

Pig nail Deionized water
washing

Pre-carbonization followed by KOH
activation

2.1 at % 251.4 F/g at
1 A/g

29.43 847.9 Tang et al. (2019)

Natural casing Deionized water
washing

Pre-carbonization followed by KOH
activation

6.34 at % 307.5 F/g at
0.5 A/g

11.6 297 Xu et al. (2018)

Porcine bladders Deionized water
washing

Pre-carbonization followed by KOH
activation

5.38% 322.5 F/g at
0.5 A/g

10.9 150 Wang et al.
(2019)
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specific capacitance of 335 F/g at 0.5 A/g. Egg white was also
carbonized with a ZnO template to fabricate a carbon material
with a capacitance of 205 F/g at 0.5 A/g (Chen et al., 2015). Ma et al.
reported an N self-doped carbon from the mixture of fresh chicken
eggs and graphene oxide via hydrothermal carbonization and KOH
activation (Ma et al., 2017).

Datetal.(2020)preparedanNself-dopedcarbonfromexpiredfresh
milk via hydrothermal carbonization and sequential KOH–H3PO4

activation. The derived biochar achieved a specific capacitance of
186.3 F/g. Yogurt was also used to synthesize highly N self-doped
biochar for supercapacitor application via hydrothermal treatment
and activation (Wahid et al., 2015). A strategy of simultaneous
CaCO3 template and KOH activation was explored for N self-doped
biocharproductionfromsoybeanmilk(Chenetal.,2019).Theobtained
carbons exhibited a specific capacitance of 240.7 F/g at 1 A/g.

A one-step impregnation activation method (Li et al., 2018) and
a two-step method with the CH3COOK activator (Li et al., 2019)
were reported for N self-doped biochar synthesis from beancurd.
CH3COOK was decomposed into K2CO3 at about 303 °C and then
as-formed K2CO3 reacted with carbon to generate manymicropores,
following R2-R5. The derived carbon materials delivered
capacitances of 284 F/g and 245 F/g, respectively, at 0.1 A/g.

Zhang et al. reported an N, O-doped activated carbon from
household expired coffee by direct water vapor activation, achieving
ahigh gravimetric capacitance of 312F/g at 1.0A/g (Zhang et al., 2022).

3.4 Algae-based N self-doped biochar

Algae are autotrophic and embryoless plants capable of
photosynthesis involving macroalgae and microalgae, which are
mainly composed of lipids, proteins, and carbohydrates (Sun
et al., 2022). It was reported that a hierarchically porous

structure with a balanced distribution of mesopores and
micropores is more effective in the capacitive performance of
algae-derived carbon than the components of raw algae, such as
proteins (Zhu et al., 2018). Therefore, the synthesis of N self-doped
char with a well-developed pore structure is a promising pathway for
algae utilization. The algae-based N self-doped biochar in
supercapacitor results are presented in Table 4.

A two-step procedure of carbonization and KOH activation was
used for biocarbon preparation from Lessonia trabeculata
(Sankaranarayanan et al., 2021) and Laminaria japonica (Cheng
et al., 2020). The derived carbon materials exhibited good
capacitances of 81.6 F/g at 1A/g and 192 F/g at 0.1 A/g,
respectively. Chlorella-derived activated carbon was also prepared
via the two-step procedure, exhibiting a gravimetric specific
capacitance of 142 F/g at 1 mA/cm2 (Han et al., 2019). Ren et al.
reported an N self-doped carbon from hydrothermal carbonization
of Enteromorpha prolifera, followed by a mild KOH activation (Ren
et al., 2018). Ascophyllum nodosum (Perez-Salcedo et al., 2020),
Cladophora glomerata (Norouzi et al., 2021), and Enteromorpha (Yu
et al., 2016) were also activated by KOH to fabricate N self-doped
carbon material for supercapacitor application. Immersion with
hydrofluoric acid increased the electrochemical performance of
the biochar from Nostoc flagelliforme algae (Wang et al., 2019).

Three types of marine algae were carbonized at 800 °C with in
situ salts as activating reagents (Gao et al., 2021). The derived
biochar possessed high SSA (621–1,140 m2/g) and N content
(4.15–5.19%) and exhibited good energy storage performance
(190.0–278.5 F/g at 0.5 A/g) and cyclic stabilities (96%–98% after
5,000 cycles). Chlorella mixed with reed and K2CO3 was carbonized
to produce 3D N-doped biochar (Yuan et al., 2022). Due to the high
N content (2.1 wt%), large SSA (1794 m2/g), and pore volume
(1.32 cm3/g), the capacitance of the biochar reached 340.4 F/g at
1 A/g. Liu et al. reported a sponge-like carbon material from

TABLE 3 Food-based N self-doped biochar applications in supercapacitors.

Biomass Pre-
treatment

Preparation method N
content

Cmax Es
(Wh/kg)

Ws

(W/kg)
Reference

Egg white – Pre-carbonization followed by KOH activation – 335 F/g at
0.5 A/g

13.6 300 Zhu et al. (2019)

Egg white – Pyrolysis with ZnO template 6.22% 205 F/g at
0.5 A/g

– – Chen et al.
(2015)

Chicken eggs – Hydrothermal treatment with graphene oxide
followed by KOH activation

5.76 at % 482 F/g at
0.1 A/g

11.3 25 Ma et al. (2017)

Milk – Hydrothermal carbonization followed by sequential
KOH–H3PO4 activation

– 186.3 F/g at
0.9 A/g

– – Dat et al. (2020)

Yogurt – Hydrothermal treatment followed by KOH
activation

12 wt% 225 F/g at
2 A/g

27 364 Wahid et al.
(2015)

Soybean milk – Carbonization with KOH and CaCO3 2.4% 240.7 F/g at
1 A/g

10.2 351 Chen et al.
(2019)

Beancurd – Pre-carbonization followed by CH3COOK
activation

1.33 at % 315 F/g at
0.1 A/g

– – Li et al. (2019)

Beancurd – CH3COOK activation 2.62 at % 284 F/g at
0.1 A/g

– – Li et al. (2018)

Coffee – Water vapor activation 4.5 at % 312F/g at
1.0 A/g

27.8 1820 Zhang et al.
(2022)
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Spirulina platensis with NaHCO3 activation, the largest specific
capacitance of which was 234 F/g at 1 A/g (Liu et al., 2018). A
comparison between KHCO3 and CO2 activation was conducted for
Myriophyllum aquaticum-derived biochar production (Shen et al.,
2018). The results showed that the KHCO3-activated carbon
possessed a better electrochemical performance.

3.5 Organic waste-based N self-doped
biochar

N-rich organic wastes are by-products with high N content
generated during the industrial manufacturing process, such as
antibiotic fermentation residue from antibiotic production, spent
coffee ground from coffee brewing, bean pulp/oil cake from oil
production, and composting leachate from biobased-waste
composting. The application of organic waste-based N self-doped
biochar in supercapacitors is summarized in Table 5.

Antibiotic fermentation residue, which is inevitably produced
during the antibiotic fermentation process, can be used for N self-
doped biochar production due to its high N content and large
volume. The oxytetracycline mycelial residue-derived biochar via
carbonization and KOH activation showed an ultrahigh SSA
(2,574.9 m2/g), a higher N content (2.27%), and, consequently, a
distinguished specific capacitance (307 F/g) (Zhang et al., 2021).
Chen et al. (2022) fabricated self-doped porous carbon nanosheets
from fermentation residues of lincomycin hydrochloride via high-
temperature pyrolysis and subsequent KOH activation. The derived
biochar exhibited an excellent gravimetric capacitance of 296 F/g at

1 A/g. Hu et al. (2022) reported an N self-doped porous carbon from
penicillin fermentation residue via hydrothermal carbonization
combined with KOH or ZnCl2 activation. The ZnCl2-activated
biochar exhibited a larger SSA of 792.58 m2/g and a higher N
content of 4.75%, resulting in a higher specific capacitance of
209.2 F/g at 1 A/g in a three-electrode system and an energy
density of 8.79 Wh/kg for assembled supercapacitors.

N self-doped biochar was synthesized from spent coffee grounds
via hydrothermal carbonization, followed by KOH activation
(Sangprasert et al., 2022). The optimal biochar showed a high
SSA of 1835 m2/g and 2.35 wt% N content, and, subsequently, a
high energy density of 10.84 Wh/kg in a two-electrode system. A
procedure of hydrothermal acidic hydrolysis, followed by KOH
activation was also designed for spent coffee ground biochar
production for use in supercapacitors (Biegun et al., 2020).

The high protein content in the defatted soybean, a solid residue
generated from oil production, makes it highly suitable for the
fabrication of N self-doped carbon materials. Zhou et al. reported an
N/O co-doped porous carbon from soybean dregs through
carbonization and KOH activation, possessing a high SSA
(1837.26 m2/g) and a high N content (1.58 wt%), and then a
superior specific capacitance (Zhou et al., 2018). Another
procedure of hydrothermal carbonization and KOH activation
was implemented to convert soybean residue into an N self-
doped carbon with high specific capacitance (Ferrero et al.,
2015). By carbonization and CO2 activation, bean pulp was
converted into a carbon material with a maximum SSA of
558.2 m2/g, an N content of up to 10%, and a maximum specific
capacitance of 106 F/g at 0.25 A/g (Ding et al., 2021). The

TABLE 4 Algae-based N self-doped biochar applications in supercapacitors.

Biomass Pre-treatment Preparation method N
content

Cmax Es
(Wh/kg)

Ws

(W/kg)
Ref

Lessonia
trabeculata

– Pre-carbonization followed by
KOH activation

0.5 at % 81.6 F/g at
1 A/g

– – Sankaranarayanan
et al. (2021)

Laminaria
japonica

– Pre-carbonization followed by
KOH activation

0.47 at % 192 F/g at
0.1 A/g

– – Cheng et al. (2020)

Enteromorpha
prolifera

Deionized water washing Hydrothermal treatment and
carbonization followed by KOH

activation

1.4 at % 214 F/g at
0.1 A/g

– – Ren et al. (2018)

Ascophyllum
nodosum

Washing Impregnation with KOH followed
by carbonization

0.8 wt% 207.3 F/g at
0.5 A/g

– – Perez-Salcedo et al.
(2020)

Enteromorpha Deionized water washing Impregnation with KOH followed
by carbonization

0.85 at % 201 F/g at
1 A/g

62 680–750 Yu et al. (2016)

Nostoc
flagelliforme

Ac–H2O2/Ac-NaClO2/HF
washing followed by deionized

water washing

Pre-carbonization followed by
KOH activation

– 283 F/g at
0.1 A/g

22 80 Wang et al. (2019)

Kelp – Direct pyrolysis 4.15% 278.5 F/g at
0.5 A/g

5.24 123.8 Gao et al. (2021)

Chlorella – K2CO3 activation of Chlorella and
reed mixture

2.1 wt% 340.4 F/g at
1 A/g

23.6 15,000 Yuan et al. (2022)

Spirulina platensis – NaHCO3 activation 7.5 wt% 234 F/g at
1 A/g

– – Liu et al. (2018)

Myriophyllum
aquaticum

– KHCO3 activation 2.3 at % 248.2 F/g at
0.5 A/g

– – Shen et al. (2018)
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introduction of CO2 retained more N atoms in biochar in the form
of N-5, N-6, N-Q, and N-X. Oil cake, the main by-product of Idesia
polycarpa oil production, also contributed to N self-doped porous
biochar with K2FeO4 impregnation and activation (Yao et al., 2021).
During the impregnation process, K2FeO4 was hydrolyzed into
KOH and Fe(OH)3 (R6). The activation process of KOH is
described in R1-R5, and that of Fe(OH)3 is shown in R7-R9.
First, Fe(OH)3 was transformed into Fe2O3 and then further
reduced to Fe3O4 by carbon or reductive gases (H2, CO). Then,
Fe3O4 was further reduced into metallic Fe, which finally catalyzed
the conversion of amorphous carbon into graphitized carbon.

4K2FeO4 + 10H2O → 8KOH + 4Fe OH( )3 + 3O2 (R6)
Fe OH( )3 → FeO OH( ) → Fe2O3 (R7)

3Fe2O3 + C,H2,CO( ) → 2Fe3O3 + H2O,CO,CO2( ) (R8)
Fe3O4 + 4 C,H2,CO( ) → 3Fe + 4 H2O,CO,CO2( ) (R9)

Composting leachate, a type of organicwastewater produced during
composting of biobased waste, mainly consists of oxidizable organics,
ammonium, phosphorus, and pathogenic organisms. Due to its high
moisturecontent,ahydrothermalpre-carbonizationandKOHactivation
strategy was used to produce carbon materials for supercapacitors (Liu
etal.,2020).ThecarbonmaterialexhibitedthehighestSSAof2,184.9 m2/g
and an excellent capacitance of 228 F/g at 0.5 A/g.

Footwear leather waste generated from the cutting process of
footwear manufacturing was also contributed to N self-doped

biochar production. After carbonization and KOH activation, the
leather-derived biochar obtained a specific capacitance of 268 F/g
(Martínez-Casillas et al., 2018). N self-doped carbon materials
(3.0 wt%) prepared from the waste of PTM bark generated from
Xuan paper manufacturing exhibited a high specific capacitance of
206 F/g at 0.5 A/g (Sun, 2017).

3.6 Protein/amino acid-based N self-doped
biochar

As green, highly accessible, and eco-friendly organic
compounds, proteins and amino acids can not only be used as
dopants of N atoms but also the precursor of both carbon and
nitrogen directly to prepare N self-doped carbon materials. The
application of protein/amino acid-based N self-doped biochar is
shown in Table 6.

Using soy protein as a C/N precursor, N/O co-doped carbon
coated graphene was prepared by one-pot hydrothermal synthesis,
followed by carbonization (Xie et al., 2019). The resultant material
demonstrated a high volumetric capacitance of 221 F/g at 0.2 A/g.
Another N/O co-doped carbon was fabricated from pea protein, the
specific capacitance of which reached 413 F/g at 1 A/g (Demir et al.,
2018). Microporous carbon obtained from protein by KOH
activation (Niu et al., 2019) exhibited an SSA of 1,117 m2/g, a
high N content of 15.29 at.%, and a specific capacitance up to

TABLE 5 Organic waste-based N self-doped biochar applications in supercapacitors.

Biomass Pre-
treatment

Preparation method N
content

Cmax Es
(Wh/kg)

Ws

(W/kg)
Reference

Oxytetracycline
mycelial residues

– Pre-carbonization followed by KOH
activation

2.27% 307 F/g at
0.5 A/g

– – Zhang et al. (2021)

Penicillin fermentation
residue

– Hydrothermal treatment followed by
ZnCl2 activation

4.75 wt% 209.2 F/g at
1 A/g

8.79 – Hu et al. (2022)

Fermentation residues – Pre-carbonization followed by KOH
activation

4.3 at % 345 F/g at
1 A/g

173 1900 Chen et al. (2022)

Spent coffee grounds – Hydrothermal treatment with acetic
acid, followed by KOH activation

1.2 at % 246 F/g at
1 A/g

10.84 4,589 Sangprasert et al.
(2022)

Spent coffee grounds – Hydrothermal treatment, pre-
carbonization, and KOH activation

– 178.0 F/g at
50 A/g

84 202,000 Biegun et al. (2020)

Soybean dregs – Pre-carbonization followed by KOH
activation

1.58 at % 321.1 F/g at
1 A/g

22.1 875 Zhou et al. (2018)

Soybean residue – Hydrothermal treatment followed by
KOH activation

1.6 wt% 261 F/g at
0.2 A/g

12 2000 Ferrero et al. (2015)

Bean pulp – Pre-carbonization followed by CO2

activation
10% 106 F/g at

0.25 A/g
– – Ding et al. (2021)

Oil cake Washing K2FeO4 carbonization 1.99 at % 250.8 F/g at
1 A/g

6.4 100 Yao et al. (2021)

Composting leachate – Hydrothermal pre-carbonization and
KOH activation

2.35% 228 F/g at
0.5 A/g

7.1 124.9 Liu et al. (2020)

Footwear leather
wastes

Ethanol washing Pre-carbonization followed by KOH
activation

12.4 wt% 268 F/g at
5 mV/s

12.8 1800 Martínez-Casillas et al.
(2018)

PTM bark waste Deionized water
washing

Pre-carbonization followed by ZnCl2
activation

3.0 wt% 206 F/g at
0.5 A/g

– – Sun (2017)
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336 F/g at 1 A/g. N self-doped porous carbons were synthesized for
supercapacitor application from sericin, a waste protein (Song et al.,
2018). Ma et al. reported a beer yeast protein-derived carbon via
stepwise pyrolysis without an activator (Ma et al., 2019). Wheat
gluten, a complex mixture of hundreds of proteins found in wheat
and related grains (Xu et al., 2018), and electrospun plant protein
fibers (Yang et al., 2018) were also converted into N self-doped
porous carbon for supercapacitor application.

There are many different kinds of amino acids with low price,
abundance, accessibility, and low health use for N self-doped
biochar fabrication. For example, the N self-doped carbon
prepared from L-glutamic acid with ZnCl2 activation exhibited a
specific capacitance of 330.6 F/g at 1 A/g (Ma et al., 2016). N/S co-
doped carbons were prepared by KOH carbonization of the
combination of L-cysteine and NaCl template at 600 °C–800 °C
(Guo et al., 2021). Due to the highest N content, the 700 °C-derived
biochar showed the largest gravimetric capacitance of 363.1 F/g.

3.7 Fungus-based N self-doped biochar

By pyrolyzing Flammulina velutipes pickled with
Mg(CH3COO)2, a self-doped biochar with an SSA of 1,174.2 m2/
g and an N content of 3.97 at% was obtained, showing a specific
capacitance of 470.5 F/g at 0.5 A/g (Xue et al., 2022). The FeCl3-
activated mushroom-derived biochar exhibited larger SSA, higher N
content, and better electrochemical performance than those
activated by KOH (Hou et al., 2019). With the activation of
KOH or ZnCl2, the Bacillus subtilis-derived carbon exhibited
superior performance in capacitors (Zhu et al., 2013). Bamboo
fungus (Zou et al., 2019) and fresh Agaricus (Wang and Liu,
2015) were also converted into N-doped carbon using a two-step
procedure of carbonization and KOH activation, offering good
specific capacitances. The natural spores of Lycoperdon boavista
were directly pyrolyzed at 800 °C, and the derived biochar showed a
capacity of 260 F/g at 5 A/g (Sun et al., 2020). The details of the
fungus-based N self-doped biochar application in a supercapacitor
are presented in Table 7.

3.8 Other N self-doped biochars

Gelatin is an animal derivative composed of various proteins. It
is produced by partial hydrolysis of collagen extracted from the skin,
bones, and connective tissues of animals (Xu et al., 2014). By
successive pyrolysis with citric acid and anhydrous iron (III)
chloride, gelatin was converted into an N/O co-doped porous
carbon with a specific capacitance of 312 F/g at 1 A/g (Shi et al.,
2017). The mixture of gelatin and KNO3 was also annealed for the
synthesis of the N self-doped carbon used in supercapacitors (Deng
et al., 2020).

Chitin, a polysaccharide substance extracted from the shell of
marine crustaceans, also contributes to N self-doping. For example,
chitin was carbonized with CuCl2.2H2O to prepare a natural
structure-maintained O/N-enriched biochar (Luo et al., 2020).
Reactions between the chitin and CuCl2.2H2O were confirmed
according to the evident differences that appeared in
thermogravimetry/differential thermogravimetry (TG)/(DTG)

curves ranging from 450 to 750°C between the mixture of chitin
and CuCl2.2H2O (Figure 8A) and individual chitin (Figure 8B). The
obtained biochar exhibited an SSA range of 1,635–2,381 m2/g, a
tunable micropore volume ratio of 63.5–96.8%, and high O/N
contents (N: 3.1–9.0 wt% and O: 10.5–12.8 wt%), resulting in a
high specific capacitance of 286 F/g at 0.5 A/g. Raj et al. also reported
an O/N co-doped carbon from squid gladius chitin, achieving a
maximum specific capacitance of 204 F/g (Raj et al., 2018).

N self-doped carbon material was synthesized directly from
chitosan using a hydrothermal treatment, followed by KOH
activation for supercapacitor application (Zhu et al., 2017). The
synthesized carbon exhibited high SSA (2,200 m2/g), large pore
volume (1.36 cm3/g), and high N content (6.3%), resulting in a
specific capacitance of 305 F/g at 0.5 A/g in 6 M KOH electrolytes.
Simultaneous carbonization and KOH activation of chitosan
regenerated from prawn shells also resulted in an N self-doped
biochar with a high specific capacitance of 357 F/g at 50 mA/g (Gao
et al., 2016).

Activated carbon with high SSA (1841 m2/g) and N self-
inherited (2.1 at%) were obtained from Artocarpus heterophyllus
seed-derived starch with ZnCl2 activation (Kasturi et al., 2019).
N-doped carbon nanosheets were prepared via simultaneous
activation and graphitization of biomass-derived natural silk
(Hou et al., 2015). Due to the resulting product’s high
SSA (2,494 m2/g), high volume of hierarchical pores
(2.28 cm3/g), and rich N-doping (4.7%), the as-obtained
carbon exhibited a capacitance of 242 F/g. The results of the
other N self-doped biochars in a supercapacitor are given in
Table 8.

4 Evolution of N-functionalities during
N self-doped biochar production

The N in the raw biomass mainly occurs in the form of protein-
N/amino acid (N-A, 399.9 ± 0.2 eV), which occupies 60%–100% of
the total N. During pyrolysis, N-A is quite easily converted to
incondensable gas (NH3, HCN, HNCO, NO, and N2),
condensable organic components (amine-N, nitrile-N, and
heterocyclic-N), and more stable N-functionalities in biochar
(Zhu et al., 2016; Zhan et al., 2018; Liu et al., 2019). Four types
of N-functionalities involving pyrrolic N (N-5, 400.5 ± 0.3 eV),
pyridinic N (N-6, 398.8 ± 0.2 eV), quaternary-N (N-Q, 401.4 ±
0.2 eV), and oxidized N (N-X, 402–405 eV) are found to exist in
biochar by XPS, as shown in Figure 9 (Zhang et al., 2021). For the
carbons derived from most types of biomass, N-5 and N-6 are the
dominant N-functionalities, contributing more than half of the total
N content (Shen et al., 2018; Yang et al., 2018; Lian et al., 2019; Wan
et al., 2019; Wang et al., 2019; Sun et al., 2020). Distinctively, N-Q
was the most abundant N-functionality in cattle bone-derived
biochar (Shao et al., 2017) and amino acid-derived biochar (Gao
et al., 2016).

It was reported that the N content in the raw biomass and the
pyrolysis temperature had a crucial effect on N distribution in
biochar (Liu et al., 2019). The biochar produced from N-richer
biomass also has a higher N content (Leng et al., 2020; Xu et al.,
2021). Therefore, the N content of biochar can be expected to be
regulated by the selection of raw material. However, biomass type
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shows a negligible influence on the distribution of N-functionalities
in biochar (Zhan et al., 2018; Liu et al., 2019).

Pyrolysis temperature is most influential to N distribution in
biochar. Generally, as temperature increased, the N content
continuously decreased, accompanied by the variation of
N-functionalities attributing to the decomposition of organic
compounds such as proteins. More specifically, N-A was
transformed into N-5 and N-6 easily via polymerization and
rearrangement and completely vanished at lower temperatures
(<500 °C), which would then partially convert to more stable
N-Q and N-X via polycondensation and oxygen reactions as
temperature continuously increased (Zhan et al., 2018; Liu et al.,
2019). A decrease in N-5 and an increase in N-Q were observed for

Spirulina platensis-derived N self-doped biochar as the
carbonization temperature increased from 600 °C to 800 °C (Liu
et al., 2018). Liu et al. (2020) also reported decreases of N-5 and N-6
with activation temperature rising accompanied by the increase of
N-Q and N-X. The intensity of N-5 and N-X in beehive-derived
biochar was notably reduced as the carbonization temperature
increased from 600 °C to 1,000 °C, whereas reserves of N-6 and
N-Q were observed (Wang et al., 2020). Moreover, the N content in
biochar was found to increase at temperatures lower than 300 °C and
then decrease at 400 °C–800 °C (Xu et al., 2021). The decrease of
N-content at low temperatures was caused by the dehydration and
decarbonization accompanied by the formation of more stable
N-functionalities, such as N-5 and N-6, while the decrease is

TABLE 6 Protein/amino acid-based N self-doped biochar applications in supercapacitors.

Biomass Pre-
treatment

Preparation method N
content

C Es
(Wh/kg)

Ws

(W/kg)
Reference

Soy protein – Hydrothermal treatment with graphene oxide
and NaOH, followed by carbonization

3.7 at % 221 F/g at
0.2 A/g

– – Xie et al. (2019)

Pea protein – Pre-carbonization followed by KOH activation 2.5 at % 413 F/g at
1 A/g

– – Demir et al.
(2018)

Protein – Pre-carbonization followed by KOH activation 15.29 at % 336 F/g at
1 A/g

27 900 Niu et al.
(2019)

sericin – Pre-carbonization followed by KOH activation 2.28 wt% 287 F/g at
0.5 A/g

6.13 – Song et al.
(2018)

Beer yeast protein – Pre-carbonization and deep pyrolysis – 300 F/g at
1 A/g

13.3 399 Ma et al. (2019)

Wheat gluten – Hydrothermal treatment followed by KOH
activation

1.93 at % 350 F/g at
0.5 A/g

47 374 Xu et al. (2018)

Electrospun plant
protein fibers

– Carbonization with calcium acetate 6.4% 223.4 F/g at
0.5 A/g

– – Yang et al.
(2018)

L-glutamic acid – ZnCl2 activation 7.1% 330.6 F/g at
1 A/g

16.7 404.7 Ma et al. (2016)

L-cysteine – Impregnation with NaCl and KOH followed by
carbonization

3.13 at % 363.1 F/g at
0.5 A/g

13.4 325 Guo et al.
(2021)

TABLE 7 Fungus-based N self-doped biochar applications in supercapacitors.

Biomass Pre-treatment Preparation method N
content

C Es
(Wh/kg)

Ws

(W/kg)
Reference

Flammulina velutipes – Pickled with Mg(CH3COO)2 followed
by carbonization

3.97 at % 470.5 F/g at
0.5 A/g

26 1,000 Xue et al. (2022)

Mushroom Deionized water
washing

Pre-carbonization followed by
FeCl3·6H2O activation

3.1 at % 307.4 F/g at
1 A/g

62.6 1,500 Hou et al. (2019)

Bacillus subtilis – KOH activation 0.68 at % 310 F/g at
0.2 A/g

– – Zhu et al. (2013)

Bamboo fungus – Pre-carbonization followed by KOH
activation

3.2 at % 228 F/g at
0.5 A/g

4.3 250 Zou et al. (2019)

Agaricus Deionized water
washing

Pre-carbonization followed by KOH
activation

2.27 wt% 135 F/g at
5 A/g

– – Wang and Liu
(2015)

Spores of Lycoperdon
boavista

– Direct pyrolysis 20.6 at % 260 F/g at
5 A/g

– – Sun et al. (2020)
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attributed to the escape of N in the form of un-condensable gas. such
as NH3, HCN, and condensable organic N compounds into the
liquid. Nevertheless, the N-5 and N-6 types are reported to be
independent of temperature because their percentage was still high,
up to 2.1 at.%, even after high-temperature carbonization (Kasturi
et al., 2019). Thus, the influence of temperature on N-functionality
evolution is still under debate and needs to be further investigated.
The introduction of activating reagents would make the evolution
pathways more complex. It can be deduced that the N distribution in
N self-doped biochar is largely determined by the combined effects
of biomass type, pyrolysis temperature, and activating reagent.

Few studies have reported the influences of activating
reagents on N distribution in the N self-doped biochar.
Generally, the N content of biochar decreased after activation
with chemical activators, such as KOH (Ma et al., 2017; Lin et al.,
2018; Han et al., 2020; Sankaranarayanan et al., 2021), KHCO3

(Qi et al., 2018), and Mg(CH3COO)2 (Xue et al., 2022).
However, N was found to be more effectively fixed into a
carbon skeleton by NaOH (Sattayarut et al., 2019), a eutectic
mixture of NaOH/KOH (Zhang et al., 2020), Fe2O3 (Wang et al.,
2022), or ZnCl2 (Sun, 2017; Han et al., 2018; Hu et al., 2022)
activators. Considering the N-functionalities, the N-5
percentage significantly increased with the increasing KOH
ratio (Sangprasert et al., 2022). After activation with NaOH,
the proportion of N-5, N-6, and N-Q increased, while that of
N-X decreased (Sattayarut et al., 2019). Two types of
N-functionalities were found in water hyacinth-derived
biochar involving N-6 and N-Q (Liang et al., 2018). The
content of N-6 increased, while that of N-Q decreased with
rising ZnCl2 proportion. NaCl could promote the formation of
N-Q and inhibit that of N-5 (Liu et al., 2022). Ding et al. found
that the use of CO2, a typical physical activator, led to more N
maintained in biochar, with a decrease of N-6, an increase of
N-X, and little influence on N-Q content (Ding et al., 2021).
However, CO2-activated carbons derived from hypha (Lian
et al., 2019) and Ganoderma lucidum spores (Lian et al.,
2019) showed lower N content than the pristine biochar.
Compared with KHCO3 activation, CO2-activated
Myriophyllum aquaticum-derived biochar exhibited higher N
content but fewer types of N-functionalities (Shen et al., 2018).

As an efficient pre-carbonization technique for N self-doped
biochar production, hydrothermal treatment also affects the N
distribution in the hydrochar. The N content in the hydrochar of
Spirulina decreased from 17.12% to 0.20% as the temperature
increased from 200 °C to 260 °C (Liu et al., 2022) in terms of four
types of N-functionalities involving N-6, N-A, N-5, and N-Q.
When the temperature was higher than 260 °C, the hydrochar
contained almost no N, which was attributed to the extensive
cleavage of N-containing macromolecules at a higher
temperature into small molecular compounds in the aqueous
phase. Nevertheless, as the temperature increased from 180 °C to
250 °C, the N content in seaweed-based hydrochar slightly
increased due to the Maillard and Mannich reactions (Soroush
et al., 2022). Because the hydrochar often acts as a carbon
precursor for subsequent pyrolysis or activation to produce
biochar, the variation of N-functionalities in hydrochar will
further lead to corresponding changes in N self-doped
biochar. For example, evenly mixing with H3PO4,
pretreatment of durian peel by heating in an oven, and
hydrothermal pre-carbonization at 200 °C were compared
(Zhou et al., 2020). Hydrothermal pre-carbonization
significantly improved the pore structures of the derived
biochar (Figures 10A–C). With hydrothermal pre-
carbonization, the N content in the biochar decreased,
accompanied by N-Q vanishing (Figure 10D). However, the
hydrothermal process of carbonized soybean sample showed
enhanced N content in the final biochar (Yu et al., 2021).

In addition to the aforementioned factors, pyrolysis pressure
(Duan et al., 2017) and pyrolysis programs (Yang et al., 2023) also
play effective roles in determining N distribution in biochar.
However, to date, N self-doped biochar for supercapacitor
application is mainly synthesized under atmospheric pressure
with conventional procedures involving one- or two-step
methods. Although the types of N-functionalities in N self-doped
biochar have been extensively reported by the existing literature, the
evolution of N-functionalities in biochar, especially the effects of
various activating reagents, is still unclear. More efforts are needed
to clarify the impact mechanism of these factors on N-functionality
evolution to explore more efficient and novel strategies for N self-
doped biochar production.

FIGURE 8
(A) TG/DTG curves of a mixture of chitin and CuCl2.2H2O; (B) TG/DTG curves of chitin (Luo et al., 2020).
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5 Contribution of N-functionalities on
supercapacitor performance

There is a consensus that all the N-functionalities contribute to
the improvement of supercapacitor performance. Specifically, N-5
and N-6 produce defects in the alkaline electrolyte to provide more
open channels and active sites for redox reactions, with electrolyte
ions benefitting the pseudo-capacitance (Jiao et al., 2022).
R10~R12 are the possible redox reactions of N-5 and N-6 in the
KOH electrolyte (Liang et al., 2021). N-Q is the key factor facilitating
the charge transfer across the electrode and electrolyte interface and
improving the conductivity of carbonaceous materials (Yao et al.,
2021). A higher N-X concentration indicates better wettability of the
carbon materials (Sangprasert et al., 2022). Wang et al. suggested
that N-Xs with high electron affinity and N-6s with less positive
charge could generate redox pairs (R13) (Wang et al., 2012).

To quantify the contribution of N self-doping induced pseudo-
capacitance to the overall specific capacitance, the N self-doped
biochar samples (PFC) from Perilla frutescens (PF) leaves were heat-
treated for a second time at 900 °C to remove the surface
functionalities (Liu et al., 2017). Around 38.8%–46.3% of the
specific capacitance was confirmed to be contributed by pseudo-
capacitance, as shown in Figure 11. By dividing the corresponding
charge by the potential window of CV curves, Xu et al. reported a
considerable pseudo-capacitance contribution of 32–40% (Xu et al.,
2018). A pseudo-capacitance contribution of 24.7%–41.7% was also
estimated for the natural casing-derived carbons (Xu et al., 2018).
For the penicillin fermentation residue-derived biochar, N-doping
was responsible for 17.87–20.46% of the specific capacitance (Hu
et al., 2022). Yao et al. found that the contribution of pseudo-
capacitance varied with electrolytes, the values of which were
41.5–83.3%, 12.2–32.6%, and 25.2–45.0% in H2SO4, KOH, and
Na2SO4 electrolytes, respectively (Yao et al., 2021). Deng et al.
also reported different pseudo-capacitance contributions in KOH
(~28%) and EMIBF4 (16–47.3%) electrolytes (Deng et al., 2020).

TABLE 8 Other N self-doped biochar applications in supercapacitors.

Biomass Pre-
treatment

Preparation method N
content

C Es
(Wh/kg)

Ws

(W/kg)
Reference

Gelatin – Successive pyrolysis with citric acid and
FeCl3

7.03 wt% 312 F/g at 1 A/g 50.2 1,190 Shi et al. (2017)

Gelatin – Activation with KNO3 1.68% 158.9 F/g at
0.5 A/g

88.3 1,000 Deng et al. (2020)

Chitin – CuCl2·2H2O activation 4.5 wt% 286 F/g at
0.5 A/g

15.41 190 Luo et al. (2020)

Squid gladius
chitin

– Pre-carbonization followed by KOH
activation

4.04 wt% 204 4.53 9,900 Raj et al. (2018)

Chitosan – Hydrothermal treatment followed by KOH
activation

1.3% 305 F/g at
0.5 A/g

8.5 1,000 Zhu et al. (2017)

Chitosan – KOH activation 4.0 wt% 695 F/g at
50 mA/g

10 1,000 Gao et al. (2016)

Starch – ZnCl2 activation 2.1 at % – 17 810 Kasturi et al.
(2019)

Silk – Activation with ZnCl2+FeCl3 4.7% 242 F/g at
0.1 A/g

90 875 Hou et al. (2015)

FIGURE 9
Schematic illustration of N functionalities (Zhang et al., 2021).
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However, note that biochar with higher N content is not equal to
better electrochemical performance. For example, the Spirulina platensis
biochar prepared at 600 °C had a higher N content than that prepared at
700 °C, whereas its electrochemical performance was weaker (Liu et al.,
2018). Xu et al. also found that the casing-based biochar with the highest
N content did not exhibit the best electrochemical performance (Xu
et al., 2018). Yao et al. investigated the relationship between the specific
capacitance (Cp) and N content of the biochar prepared from oil cake
(Yao et al., 2021). As shown in Figure 12, the variations of the curves
were extremely irregular, indicating a much more complex relationship
between Cp and N content. However, they reported that the pseudo-
capacitance contribution was much poorer than that from a sample
with superior porosity due to high surface area and suitable pore size.
Perez-Salcedo et al. found that the N influence is correlated with
porosity (Perez-Salcedo et al., 2020). To date, the relationship
between N content and the specific capacitance of N self-doped
biochar is still unclear. Research on the interactions of the N
functionalities with specific capacitance is unavailable.

FIGURE 10
(a1, a2) and (b1, b2) SEM images of biochar pretreated by heating in an oven at 200 °C, (c1, c2) SEM images of biochar pretreated by hydrothermal
pre-carbonization at 200 °C, and (d1-d3) comparison of N-functionalities between the derived carbons (Zhou et al., 2020).

FIGURE 11
CV curves of (A) PFC-600 and PFC-600–900, (B) PFC-700 and PFC-700–900, and (C) PFC-800 and PFC-800–900 (Liu et al., 2017).

FIGURE 12
Relationship between the specific capacitance and N content
(Yao et al., 2021).
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It is widely accepted that the electrochemical performance of N self-
doped carbon material is mainly determined by the coupling effect of
SSA, pore structure, N distribution, etc. Although many studies of N
self-doped biochar production involving various N-rich biomass and
fabrication strategies can be found, the relationship between N content
and specific capacitance is still unclear. Due to this, enhancing the
electrochemical performance of N self-doped biochar by regulating N
content remains challenging.Meanwhile, although the N functionalities
of N self-doped biochar have been analyzed in the literature, the
connections between them and the specific capacitance are also
undiscovered. In particular, the contribution of the N doping-
induced pseudo-capacitance to the overall capacitance is rarely
reported. Thus, more effort is needed to reveal the impact of N self-
doping on the electrochemical performance to provide more
information for the tunable fabrication of N self-doped biochar.

6 Conclusion and prospects

This review summarizes the development of N self-doped
biochar applications as electrode materials for supercapacitors in
the last 10 years. Compared with N-doping with external N
precursors, the synthesis of N self-doped biochar from natural
N-rich biomass is eco-friendly and cost-efficient. Numerous
papers reporting on the preparation and characterization of N
self-doped biochar are available, demonstrating the feasibility of
N self-doping in improving the electrochemical performance. Some
studies have also estimated the contribution of N self-doping-
induced pseudo-capacitance to the total specific capacitance.
However, it remains challenging to achieve controllable N self-
doped biochar with the desired properties because the relationship
between the specific capacitance and N self-doping is unclear. It is
widely accepted that the electrochemical performance of N self-
doped biochar is mainly determined by the combined action of the
pore structure, specific surface area, and N distribution, which are
primarily influenced by the raw material and the preparation

procedures. Therefore, efforts should be devoted to exploring the
effect mechanisms of N self-doping on electrochemical performance
in the future to provide more fundamental information for regulable
N self-doped biochar production.
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