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ABSTRACT 
 

Biofortification is a process of enhancing the nutritional quality of food crops through conventional 
plant breeding, genetic engineering, or agronomic practices. It has emerged as an important 
agricultural strategy to improve public health by increasing the micronutrient density in staple crops 
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and vegetables. Biofortification provides a cost-effective and sustainable approach to combat 
micronutrient deficiencies, also known as hidden hunger, which affects over 2 billion people 
worldwide. This review provides an overview of biofortification efforts targeting major micronutrients 
such as iron, zinc, vitamin A, and folate. The genetic and molecular mechanisms underlying 
elevated micronutrient accumulation are discussed. The review also summarizes the impacts of 
biofortification in enhancing micronutrient intake, nutritional status, and health outcomes based on 
results from efficacy and effectiveness studies. The role of biofortification in building climate 
resilience and food security is also examined. Overall, biofortification has shown considerable 
promise in tackling malnutrition sustainably in developing countries. However, continued research 
and policy support are needed to maximize its impact on nutrition security worldwide. 
 

 

Keywords: Biofortification; micronutrients; malnutrition; staple crops; hidden hunger; genetics. 
 

1. INTRODUCTION 
 

Micronutrient malnutrition or hidden hunger 
affects over 2 billion people globally, particularly 
women and children in low and middle-income 
countries [1]. Deficiencies in essential 
micronutrients such as iron, zinc, vitamin A, 
iodine, and folate have severe health 
consequences including higher morbidity and 
mortality, impaired growth and cognitive 
development, and lower productivity [2-4]. 
Conventional interventions to combat 
micronutrient malnutrition include 
supplementation, food fortification, and dietary 
diversification. However, these approaches have 
limitations in terms of coverage, delivery, 
utilization, costs, and sustainability at scale [5]. 
Biofortification has emerged as an agricultural 
strategy that complements existing interventions 
by enhancing the micronutrient content of staple 
crops through conventional breeding or genetic 
modification [6]. This review provides an 
overview of biofortification efforts for major 
micronutrients, the genetic and molecular basis 
of elevated micronutrient levels, efficacy studies 
evaluating micronutrient bioavailability, 
effectiveness studies measuring impacts on 
micronutrient status and health, and the role of 
biofortified crops in building climate resilience 
and food security. 
 

2. BIOFORTIFICATION TARGETS AND 
PROGRESS FOR MAJOR 
MICRONUTRIENTS 

 

Breeding programs have largely focused on 
three micronutrients - iron, zinc, and vitamin A 
(provitamin A carotenoids) [7]. Other targets 
include protein quality in cereals and legumes, 
essential amino acids such as lysine in cereals, 
vitamin E, and folate [8-10]. 
 

Iron: Iron is essential for blood formation, oxygen 
transport, energy metabolism, and immune 

function [11]. Iron deficiency causes anemia, 
impaired cognitive development in children, and 
reduced productivity in adults [12]. The 
development and release of iron-biofortified 
varieties have focused on pearl millet in India 
(14-89 mg/kg iron) and beans in Rwanda and 
Democratic Republic of Congo (71-94 mg/kg 
iron) using conventional breeding [13,14]. Iron-
biofortified rice (up to 6 mg/kg iron), wheat (40-50 
mg/kg iron), and sweet potato (17 mg/kg iron) 
have also been developed through transgenic 
approaches but have not been released [15-17]. 

 
Zinc: Zinc plays vital roles in growth, immune 
function, neurobehavioral development, and 
protection against infectious disease [18]. Zinc 
deficiency can lead to stunting, diarrhea, 
pneumonia, and impairment of motor 
development and cognitive function [19]. 
Conventional breeding has produced zinc-
enriched wheat (up to 58 mg/kg zinc), rice (up to 
58 mg/kg zinc), maize (up to 43 mg/kg zinc), and 
beans (up to 53 mg/kg zinc) [13, 20].             
Transgenic approaches have generated zinc-
biofortified rice (up to 45 mg/kg zinc) and wheat 
(up to 65 mg/kg zinc), although not 
commercialized [16, 21]. 

 
Vitamin A: Vitamin A deficiency causes night 
blindness, severe morbidity and mortality in 
children, and adverse pregnancy outcomes [22]. 
Sweet potato biofortified with vitamin A through 
conventional breeding (up to 560 μg/g β-
carotene) has been effective in reducing vitamin 
A deficiency in Africa and Asia [23-25]. 
Transgenic Golden Rice biofortified with β-
carotene has been developed but not yet 
released [26]. Cassava biofortified with β-
carotene (up to 20 μg/g) through transgenic 
approaches shows promise in Africa [27]. 
 
Folate: Folate deficiency in mothers leads to 
neural tube defects and anemia in infants [28]. 
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Biofortification of rice, wheat, maize, and beans 
through conventional breeding has increased 
folate levels by 1.5 to 4 times compared to 
traditional varieties [29-32]. Transgenic 
approaches have produced rice with very high 
folate content (up to 113 μg/g) [33]. 
 

3. GENETIC AND MOLECULAR BASIS OF 
ELEVATED MICRONUTRIENT LEVELS 

 

The genetic and molecular basis of elevated 
micronutrient accumulation has been 
characterized in staple crops. Increased iron 
levels in cereals such as rice and pearl millet are 
associated with up-regulation of genes involved 
in iron uptake, translocation, and storage in 
seeds [34, 35]. Elevated zinc in rice and wheat 
has been linked to genes controlling zinc uptake, 
translocation, and loading into grains [36, 37]. In 
maize, increased zinc is associated with reduced 
phytic acid, an inhibitor of mineral bioavailability, 
through mutations in a major phytic acid 
biosynthetic gene [38]. Enhanced provitamin A 
carotenoid levels in sweet potato result from 
variations in genes related to carotenoid 
biosynthesis, storage, and retention [39]. 
Mutations in enzymes catalyzing folate 
breakdown result in rice varieties with higher 
folate content [40]. Identifying and utilizing 
favorable alleles of genes controlling 
micronutrient density is key for breeding 
biofortified crops through both conventional and 
transgenic approaches. 
 

4. EFFICACY STUDIES: 
MICRONUTRIENT BIOAVAILABILITY 

 
Efficacy studies in humans have evaluated the 
bioavailability of micronutrients from biofortified 
crops to determine if enhanced levels translate 
into additional micronutrient intake and 
absorption. Iron biofortified pearl millet provided 
up to 2-3 times more absorbed iron compared to 
conventional varieties [41]. High zinc rice and 
wheat led to 1.5-1.7 times higher absorbed zinc 
[42, 43]. Vitamin A-biofortified orange sweet 
potato and maize increased vitamin A intake by 
23-100% and vitamin A liver stores by 15-56% in 
children [44, 45]. Folate from biofortified rice 
showed 2 times higher bioavailability relative to 
commonly consumed rice in humans [46]. 
Overall, efficacy studies demonstrate substantial 
bioavailability of micronutrients from           
biofortified crops with potential to address 
deficiencies. 
 

5. EFFECTIVENESS STUDIES: IMPACT 
ON MICRONUTRIENT STATUS AND 
HEALTH 

 
Several studies have evaluated the real-world 
effectiveness of biofortified crops in improving 
micronutrient status and health outcomes in 
target populations. 
 

• Iron-biofortified pearl millet reduced iron 
deficiency in children by 25% over control 
grains [47]. Iron beans sustained or 
improved iron status in women over 18 
months [48]. 

• Zinc rice maintained serum zinc in women 
and children over 4 months [49]. Zinc 
wheat reduced zinc deficiency by 24% 
compared to conventional wheat [50]. 

• Vitamin A orange maize improved vitamin 
A liver stores in children versus white 
maize [51]. Vitamin A orange sweet potato 
consistently improved vitamin A status in 
children [52-54]. 

• Folate-biofortified rice improved blood 
folate status in women of reproductive age 
[55,56]. 

 
Biofortified crops have also shown benefits for 
health indicators beyond micronutrient status. 
 

• Iron pearl millet and beans improved 
cognitive performance and physical work 
capacity in iron-deficient populations [57-
59]. 

• Vitamin A orange sweet potato reduced 
diarrhea morbidity in children by 30% over 
pale sweet potato [60]. 

• Zinc rice reduced incidence of diarrhea by 
13% compared to control rice [61]. 

 
Therefore, effectiveness studies conducted in the 
target populations provide compelling evidence 
that biofortified staple crops can lead to 
significant improvements in micronutrient status 
and related functional outcomes when consumed 
regularly. 
 

6. BUILDING CLIMATE RESILIENCE 
AND FOOD SECURITY 

 
In addition to enhancing nutrition, biofortified 
crops can support climate resilience, yield 
stability, and food security especially for 
smallholder farmers in developing countries. 
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• Breeding for higher micronutrient density 
also selects for varieties tolerant of climate 
stresses like drought, heat, and salinity 
[62]. This helps farmers maintain yields 
and income despite climate variability. 

• Micronutrient-dense crops can have higher 
market value providing farmers with 
greater food security and income 
opportunities [63]. 

• Biofortified crops are designed for local 
agronomic conditions and farmer 
preferences ensuring high adoption rates 
and benefits for rural farming communities 
[64]. 

• Cost-benefit analyses show biofortification 
delivers positive returns on investment and 
sizable economic benefits, enhancing food 
security [65,66]. 

 
Table 1. Examples of micronutrient-biofortified varieties of staple crops developed 

conventionally or using transgenic approaches 
 

Crop Micronutrient Breeding Method Maximum Micronutrient Level 

Pearl millet Iron Conventional 86 mg/kg 
Beans Iron Conventional 94 mg/kg 
Sweet potato Iron Genetic engineering 17 mg/kg 
Rice Zinc Conventional 58 mg/kg 
Wheat Zinc Conventional 58 mg/kg 
Rice Zinc Genetic engineering 45 mg/kg 
Sweet potato Vitamin A Conventional 560 μg/g β-carotene 
Cassava Vitamin A Genetic engineering 20 μg/g β-carotene 
Rice Folate Conventional 113 μg/g 

 

 
 

Fig. 1. Mechanisms underlying increased micronutrient levels in biofortified staple crops 
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Graph 1. Impacts of biofortified crops on micronutrient status from human effectiveness 
studies 

 

7. RESULTS 
 

Biofortification is the process of increasing the 
bioavailable micronutrient content of staple crops 
through conventional breeding or modern 
biotechnology methods [67]. This targeted 
approach offers a sustainable, cost-effective 
strategy to address vitamin and mineral 
deficiencies prevalent in many developing 
countries that rely on staple foods for primary 
caloric intake [68,69]. Several nutrients have 
been prioritized in biofortification initiatives based 
on the extent of associated deficiencies and 
health impacts globally. 
 

7.1 Iron Biofortification 
 

Iron deficiency anemia afflicts over 30% of the 
global population, imposing severe health 
burdens [70]. Development and delivery of iron-
biofortified staple crops has emerged as a key 
intervention to combat iron deficiency in poor 
rural communities that lack access to diverse 
diets and supplements. Conventional breeding 
approaches significantly increased iron 
concentrations in the edible grain portions of rice, 
wheat, beans, sweet potato and pearl millet [71-
75]. Iron levels 50-100% higher than 
conventional varieties were achieved while 

maintaining yields. Field studies demonstrate 
iron-biofortified crops can meaningfully enrich 
iron intake and status in women and children [76-
78]. 
 

Biofortified iron rice provided up to 45–60% of 
estimated average iron requirements in Indian 
women and children [79]. High-iron pearl millet 
lines delivered an extra 13 mg iron daily for 
Indian school children versus control lines [80]. 
Iron-biofortified beans increased iron stores by 5-
fold in Rwandan women over 18 months [81]. 
Such studies indicate iron biofortification has 
meaningful potential to combat iron deficiency 
when adopted by populations that depend on 
staple crops. However, enhancing iron 
absorption by reducing phytic acids and 
combining with vitamin C rich foods further 
boosts efficacy [82,83]. 
 

7.2 Zinc Biofortification 
 

Over 17% of the global population is at risk of 
inadequate zinc intake [84]. Zinc deficiency 
impairs immune function and child growth during 
critical developmental periods. Breeding zinc-
enriched varieties has increased grain zinc levels 
50-100% in wheat, rice, beans and lentils [85-
88]. Average daily zinc intakes from biofortified 
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wheat and rice were 31-34% higher than 
conventional lines in India [89,90]. Zinc-
biofortified lentils and wheat raised serum zinc 
levels among Indian children and women to 
significantly reduce deficiency prevalence 
[91,92]. A combined iron+zinc rice line had 
synergistic benefits, boosting iron stores by 30% 
and improving zinc status in Philipino children 
versus standard rice [93]. Further optimization of 
zinc bioavailability through reduced phytic acid 
and combined with animal source foods can 
increase efficacy [94]. 

 

8. DISCUSSION 
 
The results clearly demonstrate the potential for 
biofortification to meaningfully improve the 
nutritional status of vulnerable populations in 
developing countries who rely on staple crop 
foods as their primary caloric source. However, 
there are several considerations for successful 
translation from proof-of-concept studies to large-
scale impacts on nutrition security. 
 
First, breeding micronutrient-dense varieties 
must focus on integrating the enhanced traits into 
locally adapted, farmer-preferred cultivars to 
encourage widespread adoption [95]. The high 
iron and zinc trait in popular bean varieties 
consumed in Rwanda proved essential to 
achievement of nutritional efficacy at scale [96]. 
Participatory approaches engaging farmers from 
inception can aid appropriate varietal 
development and promotion [97]. 
 
Second, post-harvest handling, processing and 
cooking methods should retain maximal 
micronutrient content and bioavailability in 
prepared dishes [98]. Milling and polishing 
processes can remove iron and zinc 
concentrated in outer grain layers [99]. Anti-
nutritional factors like phytic acid that inhibit 
mineral absorption require mitigation [100]. 
Combining biofortified crops with vitamin C-rich 
fruits and vegetables enhances micronutrient 
bioavailability [101]. Such considerations for 
culinary practices and diet synergies are key. 
 
Third, market chain development can support 
nutrition-sensitive value addition enhancing 
accessibility of biofortified crops for rural 
communities. Processing high iron and zinc pearl 
millet into shelf-stable convenience products 
improved nutritional status of Indian 
schoolchildren compared to in-kind grain 
distribution [102]. Multi-stakeholder engagement 
in distribution and marketing is vital for last-mile 

delivery since commercial markets alone may 
overlook remote rural consumers [103]. 
 

Fourth, behavior change communication and 
education campaigns should promote continued 
adequate consumption, especially among 
nutritionally vulnerable groups like young children 
and women [104]. Nutrition counseling and 
cooking demonstrations can aid proper usage 
and sustained adoption [105]. Targeted social 
marketing via influencers and trusted information 
channels helps mainstream biofortified varieties 
[106]. Addressing gender dynamics in household 
decision-making and access to nutritious foods is 
also key [107]. 
 

Fifth, multi-sector collaboration between 
stakeholders in public health, agriculture, gender, 
rural development, business, and finance sectors 
could strengthen delivery [108]. Linking 
biofortification initiatives to supplementary 
nutrition programs and social safety nets 
improves reach to malnourished groups [109]. 
Coordinated policy frameworks should address 
potential barriers around regulation, public 
procurement, and trade [110]. Commitments to 
biofortification across government ministries and 
partners enable greater scale-up and 
sustainability [111]. 
 

Finally, continued crop improvement research on 
biofortification must be supported to extend gains 
to additional geographies, crops and 
micronutrients [112]. Enhancing genetic yields 
and agronomic traits will boost adoption 
incentives for farmers [113]. Next-generation 
biofortified crops with complementary 
micronutrients and stacked benefits like virus 
resistance are in development [114]s. Realizing 
the full potential of biofortification necessitates 
this long-term research pipeline alongside 
bringing existing proven varieties to scale. 
 

In conclusion, biofortification is poised to play a 
major role in improving global nutrition security in 
a sustainable, cost-effective manner. However, 
this requires holistic food systems approaches 
engaging multiple stakeholders across research, 
policy, private sector and civil society spheres. 
The promising results achieved at pilot scale 
warrant expanded commitments to realize the 
transformative potential of biofortification at 
national and global levels. 
 

9. CONCLUSION 
 

Biofortification has emerged as an effective, 
nutrition-sensitive, agricultural intervention to 
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address hidden hunger sustainably on a large 
scale. Substantial progress has been made in 
developing micronutrient-biofortified varieties of 
staple crops using conventional breeding, with 
more limited application of transgenic 
approaches. Efficacy and effectiveness studies 
demonstrate the ability of biofortified foods to 
significantly improve micronutrient intake, status, 
and health outcomes in populations consuming 
these crops as part of traditional diets. Real-
world studies also highlight the value of 
biofortified crops in strengthening climate 
resilience, food security, and rural livelihoods. 
Continued investment in breeding micronutrient-
dense varieties and mainstreaming biofortified 
crops within nutrition policies and programs can 
play a key role in enhancing nutrition security 
and achieving global nutrition and food security 
goals. 
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