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Abstract 

 
A heuristic i.e. empirical approach to the problem of prime number gaps of many kinds and types, different 

degrees and orders, treated as simple raw experimental data from the statistical viewpoint is presented. The 

aim of the article is to show a picture of the actual situation of prime number gaps in order to describe and to 

try to understand the structure itself of prime gaps of various kinds and orders as well as of primes themselves. 

The data base comprises the finite sequences of prime number gaps up to the value Pn of the prime counter n = 

5∙107 that is P5E7 = P(5∙107) = 982,451,653 all of them available in the net. The statistical distributions of prime 

gaps are best-fitted by the pseudo-Voigt fit function, a convolution of the Lorentz and the Gauss differential 

distribution functions, or by the so-called E-exp or exp-exp differential distribution function or by a log-linear 

histogram according to the kind of gaps examined, either δiPn (higher order gaps) or ΔkPm = Pm – Pm–k (delta-

lags) with i and k ≥ 2 or the simple linear differences δ1Pm = Δ1Pm = ΔPm= Pm – Pm–1 respectively. One of the 

unexpected results of the investigation is the appearance of inner structures at high values of nΔ, the number of 

the intervals of the distributions, suggesting the presence of groups or clusters strictly linked to the nature of 

prime numbers themselves in which the same phenomenology is present. 
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1 Introduction  
 

The problem of prime numbers, or primes, in mathematics has always been a challenge to face and one of the 

major open problems notwithstanding the many theoretical successes achieved [1-14]. In previous articles by the 

same author [15-19] an experimental approach has been attempted to the matter leading to valuable and 

remarkable findings. In the first of these articles [15] the statistical treatment of prime gaps has been just 

mentioned leaving the deepening of the topic to next further studies, thus the present report deals with this theme 

showing many cases and many different kinds, orders, degrees and ranks of prime gaps in order to try to 

understand the innermost nature of them and of primes themselves.  

 

The intention of the whole article is to show a picture of the actual situation of prime number gaps in order to 

describe and to try to understand the structure itself of prime gaps of diverse kinds and orders as well as of 

primes themselves and having already treated the deterministic facet of primes it is now time to examine their 

stochastic or probabilistic aspect as possibly hidden in their gaps. As a matter of fact it is the author’s opinion 

that both the former and the latter constitute the organization of prime numbers. 
 

In this frame the aim of the present study is twofold:   
 

1- to investigate some of the major actual features of prime number gaps of different kinds and orders 

describing the actual situation and to find relationships among them or at least patterns and/or 

configurations, if any, in order to understand their innermost nature as much as possible;    

2- to trace an innovative and original investigation pathway and method that can undergo many further 

developments and applications in the future in the wake of experimental mathematics.     
 

An uncommon and innovative side of the issue is that the whole topic has been examined just using experimental 

physics methods to analyze (and to describe too) a typical problem of mathematics, thus launching an ideal 

bridge between the two disciplines and setting an interdisciplinary viewpoint as already done by the same Author 

in his previous articles (already cited). So all along the current article an empirical language, sometimes derived 

from experimental physics, has been preferred to a formal and rigorous presentation, as well as the mathematical 

formalism and stringency have been sacrificed to the epistemological aspects of the matter in view of a 

pragmatic vision of the problem and the ensuing approach. As an anticipation it is to be told that the standard 

well-known statistical distribution functions such as Gauss, Lorentz, Voigt (or better pseudo-Voigt), E-exp or 

exp-exp that is eexp(-x) = exp[exp(−x)] and log-linear, according to the type of gap, either δiPn (higher order gaps) 

or ΔkPn (delta-lags) with i and k ≥2 or the simple linear differences Pm–Pm–1 respectively have been used like 

probes to investigate the behaviour of the statistical treatments of some kinds of data-points (namely of the prime 

gaps of different kinds and orders) that is to fit the scatter-plot of some prime gaps assumed like paradigmatic of 

the whole situation taking into account the induction principle. These statistical distribution functions have been 

chosen for the fits in that they have proven to be the best fit functions on the base of the fit parameters such as 

the correlation coefficient, the non-linear index of correlation and all the usual statistical methods or given by 

default by the PC built-in ad-hoc S.W. Other distribution function have been tested but not found to be so 

appropriate as those used.  
 

As a further consideration, it is to be emphasized that the whole work, performed by the sole Author, lasted many 

months what means that it took approximately 1,500 person-hours in the treatment of many million data (prime 

numbers and their gaps). As a matter of fact an amount of about 452,000,000 i.e. 452M data has been examined 

and statistically treated just as reported in the next Tables 2, 4 and 5 up to the value of the prime counter n = 

5∙107 that is P5E7=P(5∙107)=982,451,653. Of course only some i.e. few of all these prime numbers have been 

scrutinized among all the many primes considered owing to the limited computer memory as well as just some of 

the many cases examined are reported here both for space reasons and for the fact that the results shown are fully 

representative of the entire situation.  
   
In this empirical and pragmatic framework and having adopted the viewpoint of computational/experimental 

mathematics, the computer has been a central tool in the treatment of so many data. However just a simple 

standard PC of commercial type has been used with 700 GB HD memory and 8 GB RAM with adequate built-in 

spread-sheet SW capable of supporting calculations up to 1E308 = 1∙10308 and π value with 12 decimal digits.   
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2 The Role of Experimental Mathematics   
 

A straightforward way to obviate the problem that the universe of prime numbers has not yet unveiled all its 

deepest and most hidden secrets is to make use of experimental or computational mathematics, a matter that is 

now becoming more and more popular inside the scientific community [20-27] mostly owing to the large use and 

the wide spreading of more and more powerful and compact computers in these latest decades. Cheaper and 

cheaper PCs have greatly facilitated the use of such a practice among researchers worldwide. Thus no doubt that, 

among all the issues of mathematics, number theory is the most suitable to this experimental approach and that, 

inside it, prime numbers are the most apt to be treated experimentally, not only for their nature itself but even 

owing to the large and reliable data bases nowadays available in many websites of the net [28,29].  

   

The central issues of how to assess the results experimentally discovered in the general frame of mathematics are 

reported and well explained by Bailey & Borwein from which the main goals, among all the other ones, of 

experimental mathematics are:  

 

1) …….. omitted ………     

2) discovering new relationships;  

3) testing and falsifying conjectures;  

4) exploring whether or not a plausible/possible result may deserve a formal proof;  

5) suggesting approaches for further next formal proofs.  

 

While it is evident and clear that the formal rigorous proof in its canonical meaning and formulation remains a 

central pillar of all the mathematical strictness and reasoning however it is the Author’s opinion that in the next 

future mathematicians should become acquainted to manage experimental evidences or verifications.   

 

This intellectual process is not new at all. Just as a citation: “In arithmetic the most elegant theorems often arise 

experimentally as the result of a more or less unexpected stroke of luck, while their proofs lie so deeply 

embedded in the darkness to elude all the attempts and defeat the sharpest inquiries.” (C.F. Gauss 1777-1855) 

[30]. As a matter of fact Gauss is rightly considered one of the first experimental mathematicians by many 

researchers.  

   

Moreover, just to cite another great mathematician: “If mathematics describes an objective world just like 

physics, there is no reason why inductive methods should not be applied in mathematics just the same as in 

physics.” (Kurt Gödel, 1951) [2].      

 

Of course this relatively new scientific discipline has been already tackled by many other authors in many 

scientific reports and books, as already told, nonetheless it is the Author’s believe that never before now has it 

shown and proven all its own power, usefulness and effectiveness as in the present case of prime number gaps.   

Thus the future of mathematics can rely upon both theory and experimentation like many other sciences and 

scientific disciplines and in such a manner this new facet of doing mathematics can display its whole power in 

valuably aiding classical mathematics simply asking what factually and actually happens so that, like other 

sciences, mathematics will show itself just like a double-sided coin where linking abstraction to computable will 

be its future beyond any reasonable doubt.  

 

3 Finite Numerical Data Sets     
 

What has been done in the present research and shown here is to consider prime number gaps just as 

experimental data thus doing nothing else than usually done in the statistical treatment of actual experimental 

data [31-34], a procedure that is common to all fields of experimental physics and many other experimental 

fields of science. The main feature has been to treat prime number gaps as raw experimental data in a broad 

sense, to which all the usual statistical concepts and criteria can be applied, with the further undisputable 

advantage of having zero inaccuracy (i.e. no systematic errors) and zero imprecision (no random errors) on the 

base data whilst zero inaccuracy though not zero imprecision (owing to the approximations of the fits) are 

present on the fits and in the final results.  
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A large amount of data up to the value of the prime counter nMax=5∙107 that is P5E7=P(5∙107)= =982,451,653 has 

been used. The total data points examined amount to 452 million prime number gaps (see the next tables) of 

many types though not all the results are shown here. As a matter of fact those here reported are just few 

examples of prime gaps of any kind and order though paradigmatic of the whole situation according to the 

induction principle.   

 

In fact in dealing with prime numbers one cannot miss to study their finite or discrete differences or gaps what 

has been done by some authors [35-38] though just at the first order i.e. Pn+1–Pn both in a classical i.e. theoretical 

way and experimentally, so in the present report they have been examined from the latter standpoint with a very 

large number of cases. Thus the present article reports the statistics of the terms of the finite differences (i.e. gaps 

or deltas) of primes that is δiPn = ∑h=0→i(–1)h( 𝑖
ℎ

)Pn–h with ( 𝑖
ℎ

) = i! / h!∙(i – h)! the binomial coefficients and ∆kPm 

= Pm – Pm–k where i and k are the degree or order of the gaps. Of course having to deal with an infinite number of 

terms in all the cases one has to choose a finite number of them in order to give a sense to the whole issue. 

   

A brief introduction about the choice of the variables examined is necessary.  

  

The next list reports some of the many possible variables which can be treated, both from the statistical and the 

analytical viewpoint, when dealing with prime finite differences.  

 

   1 - δiPn = ∑h=0→i(–1)h( 𝑖
ℎ

)Pn–h = ∑h=0→i ChPn–h that is the higher order gaps (i = 2, 3, 4, … , n)    

        examined in the present study;  

 

   2 - ΔkPm = Pm – Pm–k i.e. the linear gaps or so-called delta-lags (k = 2, 3, 4, … , m) examin-  

        ed in the present study;     

 

   3 - ΔPn = Pn − Pn–1 = δPn = Δ1Pn = δ1Pn examined in the present study;  

 

   4 - dPn = δPn – <δPn> = ∆Pn – <∆Pn>  

 

   5 - ∂Pn = √(Pn
2 – Pn-1

2)  

 

   6 - ∂Pn/√δPn = ∂Pn/√∆Pn = √(Pn + Pn-1)  

 

   7 - ∂Pn/δPn = ∂Pn/∆Pn = √[(Pn + Pn-1) / (Pn – Pn-1)]  

 

   8 - Pn / Pn-h                     (h=1, 2, 3, 4, . . . . . . . n)  

 

   9 - Pn / ∆hPn = Pn / (Pn – Pn-h)      (h=1, 2, 3, 4, . . . . . . . n)    

 

  10 - (Pm + Pn) / (Pm − Pn)   

 

and so on.  

 

Of course there are no limits to the number and kinds of the variables which can be taken into account in 

examining prime number gaps in order to find relationships inside all their universe. All of them can be suitable 

to explore the prime gaps though it is of the utmost importance to identify and select the best variables, i.e. the 

most appropriate to describe statistically their most significant behaviours and trends.   

 

In the present report the first three finite differences or gaps have been taken into account when dealing with 

primes, having considered them the most interesting, enlightening, noteworthy and revealing that is:       

 

1. The so-called higher-order gaps or i-order gaps or ith gaps i.e. the prime differences under the form 

δiPn=δ(δ(δ(δ(…..δPn)))) = δδδδ…..δPn (the δ operation repeated i times) = δiPn= =∑h=0→i(–1)h( 𝑖
ℎ

)Pn–h = 

∑h=0→i ChPn–h  (n, i and h ∈ N, i ≥ 2) which is the  discrete analogue of the ith derivative of a standard 

function apart from the missing denominator;   
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2. The so-called linear gaps or linear differences, also called delta-lags, under the form ∆kPm= Pm–Pm–k with 

k, m ∈ N and k ≥ 2 that is the linear or the 1rst order difference between two primes separated by a 

distance i.e. difference k;  
 

3. The first-order gaps δPn = δ1Pn= ∆Pn = ∆1Pn= Pn – Pn-1    
 

A special attention has been devoted to the third kind of gaps that is the first order gaps in that they belong 

neither to the first nor to the second type and that’s why they have been examined and treated apart.   

The next three paragraphs give a brief description of the data base involved in the study and after having 

described the fitting and the statistical methodology in Ch. 4 the chapter 5 will discuss the results obtained that is 

the statistical distributions of the three types of gaps and their meaning in detail.  
 

3.1 Higher order gaps δiPn   
 

In the case of the higher ith order gaps or gaps of order i the following equivalences hold:  
 

δ0Pn = Pn  conventionally  
 

δ1Pn = δPn = Pn − Pn-1  

δ2Pn = δδPn = δ(Pn−Pn-1) = δPn−δPn-1= Pn – Pn-1 – (Pn-1 – Pn-2) = Pn – 2Pn-1 + Pn-2   

δ3Pn = δδδPn = δδ2Pn = δ(Pn − 2Pn-1 + Pn-2) = Pn – 3Pn-1 + 3Pn-2 – Pn-3   

δ4Pn = δδδδPn = δ(Pn − 3Pn-1 + 3Pn-2 − Pn-3) = Pn – 4Pn-1 + 6Pn-2 – 4Pn-3 + Pn–4  

δ5Pn = δδδδδPn = Pn – 5Pn-1 + 10Pn-2 – 10Pn-3 + 5Pn–4 – Pn–5  

...................... . . . . . . . . . . . . . . . . . . . .         

       δiPn = ∑h=0→i(–1)h( 𝑖
ℎ

)Pn–h = ∑h=0→i ChPn–h    
 

where, of course, n > i ≥ h ∈ N and Ch = ( 𝑖
ℎ

) = ( 𝑖
𝑖−ℎ

) = i! / [(i–h)!∙h!]  are the binomial coefficients with the sum 

∑h running from h = 0 thru i.  
   

The following Table 1 reports a very short example showing the values of the first i th order gaps δiPn with i = 0, 

1, 2, 3, … n just for the few values of i = 0 through 9 and n from 1 up to 10, i.e. from P1=2 up to P10=29. Any 

value of this matrix at (n, i) ≡ (Pn, δiPn) is the result of the difference (n, i) ≡ (n, i–1) – (n–1, i–1) ≡ (Pn, δi–1Pn) – 

(Pn–1, δi–1Pn–1) as, for example, 8 = =4 – (–4) and –12 = –4 – (8) as highlighted in the table itself. Of course the 

table (i.e. matrix) is infinite, and so are all the other matrices shown afterwards, just like the number of the 

elements (prime number gaps) so that one cannot but consider (and examine) a limited (finite) part of it. Despite 

that, the results are indicative i.e. paradigmatic i.e. symptomatic of the entire factual situation.   

 

Table 1. Values of the ith order gaps δiPn = ∑h=0→i(−1)h( 𝒊
𝒉

)Pn-i = ∑h=0→i Ch Pn–i 

 

            n        1 2 3 4 5 6 7 8 9 10 

            Pn      2 3 5 7 11 13 17 19 23 29 

δ0Pn = Pn  2 3 5 7 11 13 17 19 23 29 

δ1Pn = δPn = Pn – Pn–1 

 
1 2 2  4   2    4   2   4  6 

δ2Pn = Pn – 2Pn–1 + Pn–2 

  
1 0  2  –2  2  –2   2  2 

δ3Pn = δ(Pn–2Pn–1+Pn–2) 
   

–1  2  –4  4  –4   4  0 

δ4Pn = δδ3Pn = δδδδPn  
    

 3  –6  8  –8   8  –4 

δ5Pn = δ δ4Pn  
     

 –9 14 –16 16 –12 

δ6Pn 
      

23 –30 32 –28 

δ7Pn 
       

–53 62 –60 

δ8Pn   
        

115 –122 

δ9Pn   
         

–237 

 

As for the coefficients Ch = ( 𝑖
ℎ

) = ( 𝑖
𝑖−ℎ

) = i! / [(i–h)!∙h!]  it is easy to verify that one has ∑│C│= = ∑h=0→i│Ch│= 

2i (∀i) for the sum of their absolute values and ∑C = ∑h=0→iCh = 0 always (i.e. ∀ i≠0) in that they are the same 

coefficients of those for the formulas of the binomial powers that is (a−b)n =∑h=0→n(–1)h(𝑛
ℎ

)ahbn–h    
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Table 2. Type and number of cases of δiPn examined in the study (i≥2) 

 

n i of δiPn 1 out of ….. n° of cases 

1M i = 2, 3, 4, 5, 6, 7, 8, 9, 10 1 i.e. all 9 

3M i = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 1 i.e. all 15 

5M i = 2, 3 ,4 ,5 ,6 ,7, 8 1 i.e. all 7 

10M i = 2, 3, 4, 5, 6 1 i.e. all 5 

50M i = 2 1 out of 8 1 

 

Thus the finite differences of the prime numbers studied are the ith order gaps or δiPn (i= 2, 3, 4, 5, …..) up to the 

primes  P1M  P3M  P5M  P10M  and  P50M  according to the previous Table 2 where an amount of 37 cases for a total 

of 145.25M = 145.25∙106 prime gaps has been examined in the whole research as for this kind of gaps. However 

not all of them have been reported in this article both for space reasons and in that the same behaviour has been 

verified in any of them, so that just some cases paradigmatic of the entire situation are shown here according to 

the convenience and to their key significance. That means that the induction principle has been widely used in all 

the data treatments.     

 

3.2 Linear gaps or delta-lags ΔkPm = Pm – Pm–k  

   

As for the second type of gaps, i.e. the linear ones or delta-lags, the following Table 3 reports another very short 

example showing the initial values of the many linear gaps or delta-lags ΔkPm = Pm – Pm–k with k = 0, 1, 2, 3, … 9 

and m = 1, 2, 3, … 12 (m > k) where the table is to be read as, for instance:  Δ6P10 = P10−P10–6 = P10−P4 = 29 – 7 

= 22  or  Δ3P8 = P8−P8–3 = P8−P5 = 19 – 11 = 8   Δ7P9 = =P9–P9–7 = P9−P2 = 23 – 3 = 20  etc. as also highlighted 

inside the table itself.    

 

Table 3. Values of the linear gaps or Δ-lags of the kth order ΔkPm = Pm – Pm–k  (k≥2) 

  

           m 1    2      3       4        5        6        7         8         9        10        11       12       

Pm 2    3      5       7       11      13      17       19       23        29        31       37 

Δ2Pm=Pm–Pm–2                3       4        6        4        4         6         6         10         8        8  

Δ3Pm=Pm–Pm–3                          5        8        8       10        8        10        12        12       14    

Δ4Pm=Pm–Pm–4                                  9       10      12       12       12        16        14      16    

Δ5Pm=Pm–Pm–5                                           11      14       14       16        18        18       20    

Δ6Pm=Pm–Pm–6                                                     15       16       18        22        20       24    

Δ7Pm=Pm–Pm–7                                                                17       20        24        24       26    

Δ8Pm=Pm–Pm–8                                                                            21       26        26       30    

Δ9Pm=Pm–Pm–9                                                                                       27        28       32    

Δ10Pm=Pm–Pm–10                                                                                                    29       34    

Δ11Pm=Pm–Pm–11                                                                                                               35    

 

Table 4. Type and number of cases of ∆kPm 
= Pm−Pm–k

 examined in the study (k≥2) 
 

m (1out of…..)    k  of  ∆kPm        n∆ of intervals  n° cases  n°of gaps 

1M    (1 i.e. ALL) 

3M    (1 i.e. ALL) 

5M    (1 i.e. ALL) 

10M  (1 i.e. ALL) 

50M  (1 out of 8) 

  2   3   4   5   6 

    2   3   4   5 

  2   3   4   5   6 

  2   3   4   5   6 

          8 

              50 

              50 

              50 

              50 

              50 

      5 

      4 

      5 

      5 

      1 

       5M 

     12M   

     25M 

     50M 

  6.25M 

 3M   (1 i.e. ALL) 

10M  (1 i.e. ALL) 

10M  (1 i.e. ALL) 

10M  (1 i.e. ALL) 

50M  (1 out of 8) 

          2 

          2 

          4 

          6 

          8 

              25 

         100   200 

     100   200   300 

     100   200   300 

100 200 300 400 1000 

      1 

      2 

      3 

      3 

      5 

       3M 

     20M 

     30M 

     30M 

 31.25M  

 

For these ∆-lags too the study has not been limited to the cases here reported though extended, as reported in the 

previous Table 4, to a sum of 20 + 14 = 34 cases for a total of 212.5E6 primes. Again the intention of these 

choices has been to examine and to treat the most meaningful cases that could give the most real and evident 
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representation of the whole matter that is the statistical behaviour of prime number gaps of many orders of this 

kind. As usual the induction principle is a valid help to extrapolate the data and the results in generalizing from 

these trends of some few prime gaps to the trends of all the infinitude of prime gaps of the same kind.   

 

The difference between the two groups is in the number of the intervals (nΔ) into which any whole range of 

prime gap has been divided in order to study the variations, if any, in the results at constant n∆ intervals and 

different k (the first part of the table) and at different n∆ intervals and constant k (the second part) so to have the 

clearest view of the situation. 

 

3.3 First order gaps δPn = ΔPn = Pn – Pn–1    
 

The third case studied, as already anticipated, is the first finite differences of prime numbers that is the first order 

gaps δ1Pn = δPn = ∆1Pn = ∆Pn = Pn – Pn–1 i.e. i=k=1 which have been left aside and examined apart owing to their 

special nature inside the world of prime number gaps what should have already been expected in that the first 

finite deltas with k = i = 1 should behave as both the δiPn and the ∆kPm what is impossible. 
 
 

Also in this situation many cases (94M) have been examined by the Author as shown in the next Table 5 and 

again not all the results are reported in the present article both for space constraints and because the same trend 

has been revealed in them all thus making use of the induction principle in these cases too.  
 

Table 5. Type and number of cases δPn = ∆Pn = Pn  − Pn–1
 examined 

 

 n  (1 out of …) n∆ = n° of intervals n° of cases n° of gaps            

1M (all) 50 1 1 M 

3M (all) 50 1 3 M 

5M (all) 50 1 5 M 

10M (all) 50   100   200   400   1000   2000 6 60 M 

50M (1/8) 50   100   200   300 4 25 M 
 

Thus a total of 13 cases has been examined for a sum of 94M=94E6 prime gaps just some of which (again the 

most paradigmatic ones) shown in the figures of the ad-hoc chapter 5.2.  
  

4 Fitting Procedure and Statistics   
 

In the entire study the fitting process has been a sensitive and crucial issue even due to the gauges and markers to 

be taken into account and to be optimized all at the same time and that’s why it deserves a brief critical 

discussion. 
 

The statistical treatments of the prime gaps, considered like actual experimental data, and the related fits have 

been performed using most of the tools available in statistics [31-34]. In the fit performed between the two 

frequency distribution functions (FDFs) - i.e. the experimental one given by the actual counts, i.e. the scatter-

plot, and the theoretical or parent one or sample one given by the function that fits the data points - both the 

correlation (or Bravais-Pearson) coefficient R=R(C,F) and the non-linear index of correlation I=I(C,F) between 

any set of counts C (i.e. the scatter-plot) and the fit F (i.e. the parent distribution) have been calculated and 

maximized. The former parameter R=R(C,F) is written as   
 

R(C,F) = ∑i(Ci – <C>)∙(Fi – <F>) / √ [∑i(Ci – <C>)2∙(Fi – <F>)2] = 1–  
 

while the latter I = I(C, F) is  
 

I = I(C, F) = 1 – [(∑h(Ch – Fh)2 ∙ ∑i(Ci – <C>)] = 1–   
 

In both formulas the sums extend from 1 up to the number nΔ of the intervals used for the statistical calculations, 

while <C> and <F> are the average values.   
    
Maximizing these two statistical markers means making both of them to approach the value of 1– in order that 

the two FDFs could match one each other as much as possible, as well as equalizing their means <C> and <F>.  
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In addition the software built-in correlation coefficient 

 

R’=[nΔ∙∑hCh∙Fh – (∑iCi)∙(∑jFj)] / √ {[nΔ∙(∑kCk)2 – (∑lCl)2]∙[nΔ∙(∑mFm)2 – (∑nFn)2]} = 1–    

 

has been considered too, which has always been found to be in agreement with the previous two. All these 

parameters have been used for the matching of the Cumulative Distribution Functions (CDFs) too. In addition, 

even the two standard deviations of the means have been examined, namely 

  

σC = √[(∑i(Ci – <C>)2)/nΔ]                    σF = √[(∑i(Fi – <F>)2)/nΔ]  

 

in order to ascertain that each of them would be much lower than its respective mean <C> and <F> and that they 

could be equal one each other as much as possible.  

 

Finally, two further gauges of the fits have been minimizing the value of the Least Square Sum LSS=∑i(Ci–Fi)2 

/2σ2 according to the principle of maximum likelihood and the Chi-square Test Value T-VX2=∑h(Ch–Fh)2 /Fh in 

that both of these variables measure the goodness of the fit. As usual the sums extend from 1 up to the n∆ 

intervals used for the calculations.   

 

Just to summarize, most of the statistical tools available in statistics to treat experimental data, as already told 

and cited, have been used in order to make the best possible fits with the utmost statistical reliability. However it 

should be taken into account that in optimizing all the gauges and markers some compromise has sometimes had 

to be made which, nonetheless, in no way and in no case has ever endangered the reliability of the results but just 

influenced occasionally though weakly their precisions.  

     

As for the fits of the gaps of prime numbers both of type δiPn and ∆kPn they have been examined making use of 

the well-known standard statistical differential distribution functions DDFs which have been assumed as the 

parents distributions such as the following ones.    

  

Gauss or normal differential distribution function (the well-known bell-shape curve)  

 

G(x) = [1/(σ√2π)]∙exp[–(x–μ)2/(2σ2)]   

 

being μ=<x> its centre that is the mean value and σ its standard deviation specifying also the width of the 

distribution function FWHM = Full_Width_at_Half_Maximum = 2σ√(2∙ln2) while the maximum value is GMAX 

= G(μ) =G(<x>)= 1/(σ√2π)      

 

Lorentz differential distribution function    

        

L(x) = (γ/2π) / [(x−μ)2 + (γ/2)2] 

 

being μ = <x> its centre where it has its maximum value Lmax = L(μ) = L(<x>) = 2/πγ and FWHM = γ  

 

The comparison between the two distributions, after their normalizations, shows that the former (G) is less 

peaked while the latter (L) has heavier tails (or wings) what means a larger area and higher kurtosis, the 4 th 

statistical moment specifying the flatness of the distribution, defining kurtosis k = ∑i(xi – <x>)4 / (N – 1)σ4 what 

leads in the Gaussian and Lorentzian cases respectively to kG = 3 and kL > 3.  

 

Both distribution functions display a null value of the skewness (a measure of their asymmetry) defined as the 3 rd 

moment S = ∑i(xi – <x>)3 / (N – 1)σ3  so that both Gauss and Lorentz have S = 0 (N is the number of the data-

points).   

 

In molecular, atomic and nuclear spectroscopy (branches of experimental physics) a spectral line profile is 

usually described by means of the Voigt distribution function which is a convolution of the previous two DDFs 

i.e.  V(x) = ∫ G(x)L(x– y)dy  the integral ∫ extending from −∞ up to +∞ and the two DDFs being equally 

centred. That means that a line shape and its broadening have to be regarded as the result of two distinct 

phenomena: a random process around a mean value described by Gauss DF and a series of particle collective 

motions (of molecules, atoms or nucleons) which causes the line broadening described by Lorentz DF. It is a 
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standard procedure for simplicity’s sake to use, instead of a Voigt DF, a pseudo-Voigt DF given by  V(x) = 

f∙G(x) + (1–f)∙L(x)   (0 ≤ f ≤ 1)  that is a simple linear combination of G(x) and L(x) with the parameter f 

(weighting or mixing ratio) giving the weight of each one.  
 

At last, a fourth major DDF used in the present study is the ExpExp or E-exp function sometimes called extreme 

function [39], or Gumbel distribution, a SW built-in function, in the form E(x) = Eo + Ae–exp(–y) – (y–1)   with y = 

(x–xo) / w being A the amplitude, Eo the baseline value or offset, xo the centre and w the width. This function is 

highly skewed toward the low values of x.  
 

Going back to the finite differences of prime numbers, it is to be anticipated that the  ith order gaps (i≥2) or δiPn 

follow a pseudo-Voigt DDF, the linear gaps ∆kPm (k≥2) follow a statistical distribution of the type E-exp (or 

ExpExp), while the statistical DDFs of the ∆Pn = δPn (i.e. gaps with k=i=1) show very special features and it is 

easy to guess the reason in that they follow neither the former nor the latter distribution. That’s why they are 

examined and treated apart and just after the previous two. 
 

5 Results  
 

The statistics of the finite sequences of prime gaps of many kinds and orders have been examined and reported in 

order to determine the presence, if any, of typical features, pathways and characteristic structures. In some cases 

the fits by the previously mentioned DDFs of the scatter-plots (i.e. the fits of the data-points by the parent or 

theoretical histograms) are shown with all their characteristics and markers while in most cases just some 

qualitative results are shown in that very interesting and of great importance as never attained before now. Their 

main feature relies on their enigmatic nature and strange configurations and at the present time just some 

conjectures can be made to try to solve their well identified though mysterious structure which moreover are 

typical of all the kinds and order of gaps thus establishing the doubt that they might be typical of prime numbers 

themselves. As a matter of fact that has been checked and verified as reported in the last paragraph of this 

chapter.        
 

5.1 Higher order gaps or ith order gaps δiPn ( i ≥ 2)   
 

The next Fig. 1 shows the case of the 2nd order gaps δ2Pn = Pn − 2Pn-1 + Pn-2 as a typical example for the first 50M 

Pn (as well as Pn-1 Pn-2 and δ2Pn of course) 1 out of 8, a choice to make all the calculations faster and lighter 

therefore dealing with 25M numbers instead of 200M numbers.    
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Fig. 1. Scatter-plot ■    Gauss ───   &  Lorentz ∙ − ∙ − ∙ −  fit histograms of δ2P50M gaps 1 / 8 

  

In this figure the whole range of δ2P50M values from −246 up to +246 (though shown from –120 to +160) has 

been divided into n∆ = 50 intervals any of which having width Δ=9.84. The two fits made (the Gaussian and the 

Lorentzian one, each with its own parameters displayed in the insets as given by the built-in SW calculations) 

show clearly that this scatter-plot is well matched by a pseudo-Voigt distribution function, though at present it 

has not been possible to calculate the value of the parameter f ∈ (0., 1.). However it is of the utmost importance 
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and should catch the attention the fact that in all the 37 cases examined the existence of such a situation has been 

carefully verified so that it is straightforward to assess that all the finite differences δiPn = ∑k=0→i (–1)k( 𝑖
𝑘

)Pn–k 

with i ≥ 2 have statistical distributions well fitted by pseudo-Voigt DDFs that is by  V(δi) = f∙G(δi) + (1–f)∙L(δi)  

being f ∈ (0., 1.) and G & L the Gaussian and the Lorentzian DDFs respectively with their ad-hoc parameters 

shown in the insets.  

 

The next two Figs. 2 (n = 1M and i = 5 that is δ5P1M) and 3 (n = 3M, i = 16  i.e. δ16P3M) both of which at n∆ = 50 

(zoom-in) show other two examples of what has been told just now (scatter-plots and histograms) as well as 

other interesting features such as: 
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Fig. 2. Scatter-plot & fits for δ5P1M n∆=50             Fig. 3. Scatter-plots & fits for δ16P3M n∆=50 

 

the increasing values of δiPn with increasing i values (clearly derivable from the binomial coefficient formula), 

the peaks of the DDFs which are best fitted by the Lorentzian distribution functions, the wings or tails of the DFs 

which are approximately half-way between the G(δi) and the L(δi) functions and finally the areas A(i)=A(δi) of 

the Gauss and Lorentz fits which increase vs. n (from 1M to 3M) and vs. the order i (from 5 to 16) of δiPn. As a 

matter of fact the features of the fits show the following results from the built-in SW calculations used.    

 

For the case of δ5Pn for 1M primes i.e. δ5P1M (Fig. 2) the fit features are: 

  

Model: LORENTZ - - - - - - - - - - -   t-vX2 = 11,718,044.269   R2 = 0.99307 height H = 161,890 yo = 5.049 ± 

0.686    xc = 3.85 ± 1.45     w = 198.4 ± 4.9     A = 50,449,164. ± 1,050,171.  

 

Model: GAUSS _____________  t-vX2 = 10,011,100.434  R2 = 0.99408  height H = 143,670  yo = 1.339 ± 0.525    

xc = –4.41 ± 1.41   w = 194. ± 3.    A = 35,043,836. ± 518,229. 

 

For the case of the δ16Pn gaps for 3M primes i.e. δ16P3M (Fig. 3) one gets:  

 

Model: LORENTZ - - - - - - - - - -   t-vX2 = 139,400,360.33  R2 = 0.99373  y0 = −13.480 ± 2.085  xc = 4.91358 ± 

1.462    w = 199,869.29 ± 4,639.53     A = 212,219,472,458. ± 3,909,146,055. 

 

Model: GAUSS _____________   t-vX2 = 130,034,146.9 R2 = 0.99415 height H = 603,320 y0 = 4.016±1.777 xc = 

–52.0 ± 1.5 w=203,089.±3,116.  A=153,566,166,178.± 2,185,919,810.   

 

About the area A of the two curves, one can look at the next Figs. 4, 5 and 6 which show the plot of A vs. i = 

order of δiPn for the examples of n = 1M, 3M and 5M respectively from which the exponential increases of the 

relationships are clearly apparent, for both Gauss and Lorentz cases, leading to a log-linear relationship in the 

general case (i.e. ∀ n and ∀ i).  

 

Thus one gets from a best fit in Fig. 4:    LOG_AL1M=(6.291 ± 0.01791)+(0.2846 ± 0.00274)∙i 

with fit values    R=0.99968     SD=0.02123     N=9     p<1E−4  
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Fig. 4. Areas of the fits vs. order i for 1M             Fig. 5. Areas of the fits vs. order i for 3M 

 

and similarly for Gauss area, while for Fig. 5 one gets the fit equation for Lorentz area   

 

LOG_AL3M = (6.83141 ± 0.02035) + (0.27837 ± 0.00204)∙i 

 

with  R=0.99965    SD=0.03411   N=15   p<1E−4  and the same for the Gaussian area.  

 

The exponential increases of the relationships A = A(n) are clearly evident, for both Gauss and Lorentz cases ∀ n 

and ∀ i   
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Fig. 6. Areas of Gauss and Lorentz fits vs. order i for n=5M 

 

From the previous Fig. 6 it is easy to get for the Lorentz area of δiP5M the fit values R=0.99985   SD=0.01114 

N=7 p<1E−4 and the equation  

 

LOG_AL = (7.11049 ± 0.01134) + (0.273 ± 0.002)∙i    

  

In all the three Figs. 4 thru 6 the relationships hold both for Gauss and Lorentz case    lg[AL(δi)] = αo(n) + α(n)∙i  

and  lg[AG(δi)] = βo(n) + β(n)∙i  so that it is plain to plot the coefficients α, αo, β and βo vs. n together with their 

errors as in the next two Figs. 7 and 8 that is Fig. 7  
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Fig. 7. Coefficient αo for Lorentz area vs. n             Fig. 8. Coefficient α for Lorentz area vs. n 

 

(αo vs. log(n)) and Fig. 8 (α vs. n) just for the Lorentzian case (the Gaussian one is similar) for the data points n = 

1M, 3M and 5M with the fits shown.   

  

As for Fig. 7 (Lorentz case) the fit gives  R=0.99976   SD=0.84342   N=3   p<0.01387 with     

αo = αo(n) = − (0.75188 ± 0.16622) + (1.17318 ± 0.02557)∙log(n) 

 

while for Fig. 8 (again Lorentz) the fit gives  R=0.99672   SD=0.25989   N=3     p<0.05156    

          

 β = β(n) = (0.28697 ± negligible) − (2.73E–9 ± 2.22E–10)∙n   

 

Of course one could proceed in the same way for what concerns the Gaussian area and, once found the value of 

the factor f ∈ (0,1), go on for the pseudo-Voigt area too. 
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Fig. 9. Lorentz area AL vs. n for the first 50M δ2P50M 1 out of 8 

 

Again for the Lorentzian area the previous Fig. 9 shows the plot of AL(n) that is area vs. n for the δ2Pn (i.e. order 

i = 2 and the plotted n values), another interesting issue, among all the other ones, shown just as an example. The 
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fit and its features are shown in the inset. Thus one can estimate that the more general relationship might hold for 

both the Gaussian and Lorentzian areas and so for the pseudo-Voigt too:     A(n) ≈ γo(n)∙nγ(n)      

 

It is now time to go back to a very important key aspect of the topic examined till now in the present paragraph 

wondering what is the meaning of the contemporary presence of these two distribution functions (Gauss and 

Lorentz) for the δiPn   

  

First of all the pseudo-Voigt DF is the evidence of the mixing of the other two DFs, as detected in many 

molecular, atomic and nuclear spectra for the line shapes, being the sum of two effects. While the presence of the 

Gaussian component is the clear evidence of random processes - the random dispersion of δi values around a 

mean value (in this case null: <δi>=0) thus perfectly reasonable and also typical of nuclear spectroscopy [40] - 

the presence of the Lorentzian component is less plausible. This DF tends to give a major weight to the tails thus 

being responsible for the line broadening that seems to suggest the occurrence of some inner structures. As a 

matter of fact in spectroscopy the presence of a Lorentzian shape for a spectrum line is a symptom of the 

existence, among the other things, of collective modes or motions governing the whole phenomenon. A typical 

example is the Stark effect in hydrogen as well as the line broadening of the plasma plume observed in the 

atomic and molecular spectroscopic technique called LIPS (Laser Induced Plasma Spectroscopy) [41].   

 

Of course in the present circumstances (i.e. δiPn and in general prime number gaps and primes themselves) 

certainly it is not possible to speak of collective modes or motions, but it is surely suitable to speak of gatherings 

or groups or clusters of numbers. Thus there is the well-founded feeling that the Lorentzian component of the 

pseudo-Voigt DF can be the effect of some inner structures of δiPn leading to innermost groups responsible for 

their so-called collective behaviour i.e. their gathering. 

   

Having ascertained the presence of the Lorentzian component in all the finite differences δiPn of order i of primes 

Pn, though with different weight f(i,n)∈(0,1), the plain next step is to look for these groups or this clustering 

effect the presence of which has been experimentally discovered by chance: in an effort to improve the statistics 

of δ5Pn in the case n=5M when the number n∆=50 of the intervals of the whole histogram has been raised to 

n∆=150 thus getting the Fig. 10 and to n∆=500 as in the next Fig. 11 (zoomed scale).           
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Fig. 10. Scatter-plot(s) of δ5P5M with n∆=150          Fig. 11. Scatter-plots of δ5P5M with n∆=500 

 

The former suggests the existence of two scatter-plots while the latter shows at least 3 (or maybe 4) scatter-plots 

all of them “concentric” that is with <δ5Pn>=0 though with different top values and FWHM. Going on in such a 

way the next Figs. 12 and 13 display the situation for δ5P5M with n∆=750 the former and n∆=1000 the latter. It is 

evident for n∆=750 the presence of at least 5 concentric DFs and for n∆=1000 of many concentric distributions 

with different maximum values and different FWHM. Thus it is clear that the whole population of δ5Pn is 

subdivided into groups or clusters any of them having its own FD or fit histogram centred at <δ5P5M>=0 though 

with different height and different standard deviation that is different area.  

 

In addition it can be observed the appearance of a skewness towards the negative values of δ5P5M in all the 

groups. While it is not possible - at this stage of the research and with the tools available which do not seem 
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capable of facing the situation - to understand fully all the features of these newly appeared scatter-plots, 

nonetheless the presence of a skewness in them is the distinctive evidence of the abandoning of the Gaussian or 

Lorentzian fit and so of the pseudo-Voigt curve.    
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Fig. 12. Scatter-plots of δ5P5M  n∆=750                  Fig. 13. Scatter-plots of δ5P5M n∆=1000 
 

It is very interesting to highlight that this effect can be seen not only in the present case of i=5 and n=5M but also 

in all the other cases here examined, though with odd i values i.e. i = 2j+1, what leads to infer that the whole 

situation holds ∀ i odd.  
 

All the following Figs. 14 thru 19 show the case n=5M and δ8Pn i.e. δ8P5M for n∆= 50 100 150 500 750 and 2,000 

respectively.    
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Fig. 14. Scatter-plot and fits of δ8P5M  n∆=50            Fig. 15. The same for of δ8P5M n∆=100 
 

In Fig. 14 one has: Gauss fit:  Chi2=1.65779E8   R2=0.99625 AG=1.381E9 Centre=0.17881 Width=1,491.1 

Offset=5,345.0   Height=7.3938E5 while for the Lorentz fit: Chi2=3.14327E8    R2=0.99289 AL=1.979E9 

Centre=0.20401 Width=1,512.6 Offset=–26.658    Height=7.3293E5  
 

It is interesting to remark that the Lorentzian fit has always a greater area (as already shown), a greater height 

and a greater width than the Gaussian one. 
 

In the other Fig. 15 (nΔ=100) the results are similar.  
 

The splitting of the first unique scatter-plot for n∆ = 50, 100 and 150 (Fig. 16) into two curves for n∆=500 (Fig. 

17) and the further splitting into a multitude of further clusters for n∆=750 and n∆=2,000 as in the two Figs. 18 

and 19, though gathered into two subgroups, is clearly visible. Of course also these behaviours deserve in-depth 

investigations in the future as well as the fact that in this case i=8 (i.e. i even) none of the curves has any 

asymmetry at all conserving its whole initial symmetry just like for n∆=50. 
 

It is plain to recognize that at i=2h i.e. i=even the symmetry is conserved ∀n∆ what does not happen for i=2j+1 

that is for odd i as also depending from the analytical formulation of δiPn    
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Fig. 16. Scatter-plot & fits of  δ8P5M  n∆=150           Fig. 17. Scatter-plots of  δ8P5M  n∆=500 
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Fig. 18. Scatter-plots of δ8P5M n∆=750                  Fig. 19. Scatter-plots of δ8P5M n∆=2,000 
 

All the next six Figs. 20 thru 25 illustrate the case of n=10M and δ6Pn with n∆ = 50 400 800 1,200 1,600 and 

4,400 and they are of some interest. Again, while at n∆=50 there is just one scatter-plot fit by only one histogram 

(as usual a pseudo-Voigt DF), at n∆=400 there are three different concentric curves (i.e. peaked at and equally 

centred at <δ6>=0 and symmetric around this value), at n∆=800 there are 3 (maybe 4) concentric and symmetric 

distributions, at n∆=1,200 and 1,600 there are even 6 or 7, whilst finally at n∆=4,400 the histograms tend to gather 

themselves into two major groups, as shown in the Fig. 25. One can easily also see in this that there are many 

void intervals (that is with null counts) in that the width itself of the single intervals becomes too narrow to have 

counts. 
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Fig. 20. Scatter-plot of δ6P10M n∆=50                 Fig.21. Scatter-plots of δ6P10M n∆= 400 
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Fig. 22. Scatter-plots of δ6P10M n∆=800              Fig. 23. Scatter-plots of δ6P10M n∆=1,200 
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Fig. 24. Scatter-plots of δ6P10M n∆=1,600            Fig. 25. Scatter-plots of δ6P10M
  n∆=4,400 

 

It has to be remarked that most of the previous figures, as well as of the following ones, are zoomed-in as the 

tails of the distributions have very few or zero counts and are not important for the trend of all the data points.   

 

As a final example the case of n=10M and δ3  i.e. δ3P10M is shown in order to debate another kind of behaviour 

(see Figs. 26 thru 31) in which it is clear and evident the pronounced asymmetry, i.e. skewness, of the scatter-

plots toward positive values.  

 

-200 -150 -100 -50 0 50 100 150 200

0,0

200,0k

400,0k

600,0k

800,0k

1,0M

1,2M

1,4M

1,6M

1,8M

2,0M

Lorentz Fit

Gauss Fit

C


3
P

10M
                  n


=50

  

-200 -150 -100 -50 0 50 100 150 200
0,0

200,0k

400,0k

600,0k

800,0k

1,0M

1,2M

C


3
P

10M
                  n


=100

 
 

Fig. 26. Scatter-plot and fits of δ3P10M  n∆=50         Fig. 27. Scatter-plot(s) of δ3P10M  n∆=100 
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Fig. 28. Scatter-plots of δ3P10M n∆=200            Fig. 29. Scatter-plots of δ3P10M  n∆=300 
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Fig. 30. Scatter-plots of δ3P10M n∆=500           Fig. 31. Scatter-plots of δ3P10M n∆=1000 
 

In this case (δ3P10M for many n∆) the number of scatter-plots i.e. δ3 clusters seems to be partially limited to ~ 5 as 

a maximum, afterwards persisting with increasing n∆ up to the max value examined n∆ = 3,400 (not shown). 

Again, here too there are many void intervals starting from n∆=500 and later increasing more and more - being 

this the evidence of narrower and narrower interval widths with no counts at all or just one count or few counts - 

until all the scatter-plots become sparser and sparser and all the scatter-plots vanish at n∆ sufficiently high. 

Another interesting feature of this case is its evident skewness at any value of n∆ ∈ [50, 3400] as already seen, 

though towards positive values.   
 

Of course one can go on, as the Author has done, at least up to an endpoint discovering an entire “zoo” of 

possibilities.  
 

An important comment has to be made at this point. The presence of the clusters of prime number gaps is 

presumably the evidence of analogue clusters in prime numbers themselves what is nothing but the experimental 

evidence of Dirichlet’s theorem: If a and b are natural numbers so that (a,b)=1 then there are infinitely many 

primes of the form Pn=an+b.  
 

In concluding this section devoted to δiPn it has to be remarked that there are still a lot of aspects, issues and 

facets to be examined more in depth than done insofar and this will be the topic of a future work. At the present 

stage of the study what is important is that a methodology has been established together with some significant 

and remarkable findings.      
 

5.2 Linear gaps or delta lags of the kth order ΔkPm    
 

The next theme of this research is the statistical treatment of the other kind of prime finite differences that is the 

linear gaps ∆kPm = (Pm – Pm-k)  (k=2, 3, 4, 5, ………. ∈ N and k<m) or “delta lags” the initial values of which are 

reported in the earlier Table 3 and the number of cases examined are shown in the previous Tab. IV. 
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From such matrix │∆kPm│≡│Pm −Pm-k│ the values of the many prime finite differences of value k to which the 

statistical treatment can be applied are derived soon. All the cases of  ∆kPm   with n∆=50 examined by the author, 

though not all of them reported, show that the E-exp or exp-exp or extreme function (a SW built-in fit function) 

can well fit the scatter-plots.  
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Fig. 32. Scatter-plot and fit histogram of ∆8P50M 1 out of 8 n∆=50 

  

The paradigmatic case of Δ8P50M 1 out of 8 and nΔ = 50 is shown in the previous Fig. 32 together with the 

features of the fit function i.e. the SW built-in distribution function E-exp or exp-exp is of the type   E(z)=Eo + 

A∙e–exp(–z)–(z–1)    z = (x–xo) / w  where Eo=E(0) is the baseline or offset, Eo+A=EMax is the top value, w its width 

shown in the inset with the fit features.  

 

As in the previous cases also here the examination has been extended to the values of n∆ shown in the Figs. 33 

(n∆=100), 34 (n∆=200), 35 (n∆=300), 36 (n∆=400), all the cases for 50M  1 value out of 8  and ∆8P50M.   
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Fig. 33. Scatter-plot ∆8P50M 1/8  n∆=100            Fig. 34. Scatter-plots ∆8P50M 1/8  n∆=200 

 

The extension to many values of n∆ has been performed in order to check, here again, the presence of ∆kPm 

clustering, an effect that seems typical of the prime finite differences both δiPn and ∆kPm as well also of primes 

themselves Pm according to Dirichlet’s theorem.   

 

Also for these histograms (as in the previous δi cases) it can be conjectured that any inner histogram is best fitted 

by the same kind of function, an E-exp distribution function, having the same centre (in this case ∆h
o=138.0±0.5) 

with different A and w.  
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Fig.35. Scatter-plots ∆8P50M 1/8 n∆=300              Fig. 36. Scatter-plot ∆8P50M 1/8 n∆=400 

 

The few cases described in the present study (just a part of the several cases treated) might be enough to draw 

some initial conclusions already reported, nonetheless much more remains to do in the field of experimental 

mathematics applied to prime numbers and to their gaps in order to understand and explain the whole matter. 

Here just some suggestions of investigations have been given to the viewpoint of both experimental and classical 

or theoretical mathematics.  

 

5.3 First Order Gaps ΔPm = δPm   

 

Now it is time to face the problem of the first degree of prime number gaps, i.e. of the simple linear differences 

of primes Pm – Pm-1 =δPm=∆Pm=δ1Pm=∆1Pm a topic that has been left aside insofar. As a matter of fact the two 

Figs. 37 and 38 show the statistical behaviour of δP5M=∆P5M=δ1P5M=∆1P5M on a log-lin and full linear scale in the 

case m=5M and n∆=50 
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Fig. 37. Scatter-plot (log) and fit δP5M n∆=50           Fig 38. Scatter-plots (lin) δP5M n∆=50 

 

The behaviour is completely different from that of δiPn (i≥2) and ∆hPm (h≥2) being the best fit of the data points a 

seeming straight line (in the log case) that is a trend belonging neither to the first nor to the second type of gaps. 

  

However the data plotted on a linear scale show a trend with more than one peak (maybe 2) of statistical 

distributions highly skewed towards the lower values of δPm=∆Pm. In both figures the presence of data grouping 

or clustering is apparent. Despite that, a data fit can be tried in the log-lin plot leading to the equation log(C) = 

(5.26235±0.06123) –(0.02948±5.71E−4)∙ΔP5M   with C=counts N=50  R=0.9924  σ=SD=0.20383  and  p<1E–4   
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Fig. 39. Log scatter-plots of δP1M n∆=50                Fig. 40. Lin scatter-plots of δP1M n∆=50 
 

Again in all these cases it has been ascertained, beyond any reasonable doubt, that the spreads observed in the 

data points are to be ascribed just to the aforesaid data-point bunching or clustering i.e. to the appearance of 

innermost structures with increasing n∆ that is the number of intervals of the whole range examined.  
 

The latest two Figs. (39 and 40) show another example, even clearer, of this trend in the case of δPm=∆Pm for 

m=1M on a log-lin scale (Fig. 39) and on a lin-lin scale (Fig. 40) for n∆ = 50. In both these figures the presence 

of just two distinct statistical distributions or scatter-plots is clearly evident. These structures have been seen by 

other authors [35] too and this trend is clearly apparent in all the examined cases (Table 5) where there is the 

evident mark of their log-lin linearity.  
 

One of the initial conclusions is that all the cases presented here surely are not exhaustive of the whole problem 

of prime number gaps though just symptomatic and paradigmatic of a situation that should be studied in depth 

and in detail having at hand many more data and many more powerful tools than at present.     

Nonetheless what is astounding is the fact that the statistical distributions here reported and discussed appear new 

at all and never met before what contributes even more to consider prime numbers as “objects” fully atypical and 

uncommon in the field of number theory.  
 

It will be up to the “classical” mathematicians the theoretical explanations of such trends and behaviours as 

already told. What has been done in this siege is to sketch the factual, current experimental situation of the 

problem giving a behaviouristic vision of prime numbers gaps and primes themselves.      
 

5.4 Statistics of the finite sequences of prime numbers Pn   
 

Now one should wonder whether it is possible that prime numbers themselves might show tendencies of 

clustering from the statistical viewpoint when changing the number of intervals n∆ what means changing the 

width ∆ of these intervals themselves. As a matter of fact some authors [42-46] have recognized and studied 

arithmetic progressions of primes within the prime themselves infinite sequence so that it would look correct to 

ask the aforesaid question also in view of Dirichlet’s theorem as already told. The following figures show that it 

is so and the effect got by changing n∆ is the appearance of clusters again.  
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Fig. 41. Scatter-plot of P10M n∆=2,000                    Fig. 42. Scatter-plots of P10M n∆=10K 
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The previous Fig. 41 shows the scatter-plot of the first 10M primes (up to the value of P10M= 179,424,673) for 

n∆=2,000 whilst the Fig. 42 illustrates the same case at n∆=10,000. There seems to be the clear evidence of 

clustering of prime numbers into a series of similar curves. of course for n∆≪2,000 just one single well-defined 

curve is present [8].  
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Fig. 43. Scatter-plots of P50M 1/8 n∆=200             Fig. 44. Scatter-plots of P50M 1/8 n∆=20K 

 

An alike suggestion holds for the case m=50M (P50M=982,451,653) 1 value out of 8 as reported in the previous 

two figures: the Fig. 43 for n∆=200 where just one single scatter-plot is apparent (fitted by a modified chi-square 

function with the ad-hoc value of all the parameters) and the Fig. 44 holding at n∆=20,000 showing many scatter-

plots.   

 

This behaviour is especially evident by zooming-in these two previous figures as shown in the next two figures 

45 and 46.  

 

The modified Chi-square function [15-18] is the best fit function for the single scatter-plot of Fig. 43 and it is to 

be conjectured that any scatter-plot of Fig. 44 is fitted by the same function Χ2(A,k,n/μ) with the same value of A 

and k but different decay parameter μ. The same happens for any finite sequence of prime numbers Pn ∀n. 

   

Though not shown, nonetheless it is interesting to get acquainted with the fact that even other variables show this 

effect of data point clustering or bunching into a multitude of similar curves first of all the prime frequencies 

fn=f(n)=n/Pn [16] so that such an effect seems typical   
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Fig. 45. Zoom-in of Fig. 43 [0, 100M]                       Fig. 46. Zoom-in of Fig. 44 [0, 10M] 

 

not only of the many types of prime number gaps but also of primes themselves. As already told that seems to be 

in accordance with Dirichet’s theorem.   

In addition some other variables reported in the list in Ch. 3 have been statistically examined (though not 

reported) and it has been ascertained that they show the same effect of data bunches.    
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6 Concluding Remarks and Future Perspectives   
 

The use of computational mathematics in treating prime number gaps as experimental data is a powerful 

instrument leading to show what is the actual behaviour of prime numbers and their gaps as experimentally 

assessed as well as conducting to main results and findings among which the gathering of gaps (and primes 

themselves) into clusters or bunches.    
 

The main conclusions of the research are:  
 

1- The situation of prime number gaps is much more complex and complicate than ever thought in that they 

show unexpected features never supposed before. The spirit of this article has been to show 

experimentally the behaviour of prime number gaps actually and factually as never seen or even imagined 

before now.   

2- There are many kinds of prime number gaps, different one from each other also according to their 

statistical behaviours, like:  
 

1) the higher order gaps …….. δiPn= ∑k=0→i(–1)k( 𝑖
𝑘

)Pn-k   

 

2) the linear gaps or delta-lags ……… ΔkPn = Pn − Pn-k    
 

3) the first order gaps …………... δPn = ΔPn = Pn − Pn-1  

 

3- The scatter-plot of any of these three kinds of gaps is fitted by a different DDF i.e. respectively:    
   

1) Voigt           2) E-exp            3) log-linear.  
  

4- In increasing the number of nΔ intervals in the statistical treatments some inner structures, i.e. clusters or 

bunches, appear in all the kinds of gaps as well as in prime number themselves (a probable consequence of 

Dirichlet’s theorem).  

5- It will be up to future studies as well as to the classical, i.e. theoretical, mathematicians the deepening of 

this entire study and the explanation of all these behaviours.  
 

Further comments can be made which might be useful in the future when developing and enlarging the whole 

research and study.  
 

1- As already told the Gaussian function can be regarded just as a modified chi-square function with very 

high values of the parameter k (i.e. k>>30-40) so it can be deduced that also in the cases of δiPn with i 

even one faces again the above-said modified Χk
2 function with the ad-hoc values of its parameters.    

2- Though it has to be verified, nonetheless it can be conjectured that for the finite differences too ∆hPm one 

can face again the modified chi-square function Xk
2(A,m/xo) with k>2 as the fit function, maybe re-

normalized.  

3- As for the appearance of clusters in the cases of prime gaps it is obvious that the presence of Lorentz 

distribution function is simply a sufficient condition to the formation of such groupings though not 

necessary.    

4- The entire trend of prime gaps with all their groupings depending on the value of nΔ might be the clue of a 

chaotic behaviour (Poincare) characterized by “strange attractors” and “stability islands”. However all 

that must still be verified in depth especially having at one’s disposition many more data.  

5- This research, though still in its first stage and to be furtherly enlarged and developed, can be of 

appropriate aid in future studies on prime numbers and prime gaps both from the theoretical and 

experimental viewpoint. Deeper studies could concern all the issues just now suggested as well as many 

others as derivable from the present context.      
 

A concise though noteworthy further final remark is required. 
  
Despite all the interesting results and conclusions, a more systematic and structured review of the whole matter is 

needed in that the entire subject at issue is so vast and deep to deserve many more resources at the present time 

not available to the Author who has been compelled to limit himself just to a bird’s-eye glance to the matter 

leaving any more detailed examination of all the single parts, issues and items to the next near and far researches 

and studies.    
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As for the future, one of the most important and interesting developments is the search for self-similarities, if 

any, in the statistical treatment of prime gaps, an issue that could contribute to shred an additional light on the 

matter.       
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