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Abstract: The integration of communication infrastructures into traditional power systems, transform-
ing them into cyber-physical power systems (CPPS), accentuates the significance of communication in
influencing system performance and sustainability. This paper presents a versatile, innovative cyber-
physical co-simulation framework that integrates the physical power system and communication
networks, uniting OPAL-RT, a network simulator (ns3), and Docker containers into a sophisticated
platform, facilitating intensive studies into CPPS dynamics. The proposed experimental study pro-
vides an innovative way to assess the frequency control response of a cyber-physical inverter-based
microgrid (MG), addressing the MG sustainability challenges. We consider diverse real-world sce-
narios, focusing on communication delays and distributed denial of service (DDoS) attacks within
the communication channels. We propose a precise ns3-based communication model that bridges
the MG’s primary and secondary control layers, an aspect often overlooked in previous studies; this
is a noteworthy contribution to elucidating the adverse impacts of communication latency on MG
frequency performance. The experimental results demonstrate the effectiveness of the centralized
secondary controller in eliminating the frequency deviations. Furthermore, the findings offer insights
into stable and unstable regions, revealing how the communication delay value affects the frequency
stability under different operating conditions. In addition, the developed real-time DDoS attacks
model within the proposed communication surface unveils crucial insights into the MG’s resilience to
cyber threats. This work’s revelations offer a foundational awareness of MG vulnerabilities, paving
the way for designing robust and resilient communication networks and control strategies within the
cyber-physical inverter-based microgrids.

Keywords: cyber-physical microgrid; co-simulation; communication networks; ns-3; cyber-attacks;
vulnerability assessment

1. Introduction

With the increase in energy consumption and the growth in the penetration of dis-
tributed generators (DGs) in the power grid, there is a necessity for the transition from
the conventional power grid to the smart grid [1]. Initiatives for smart grids aim to over-
lay the current electric grid with a more robust communication, processing, and sensing
infrastructure, allowing the grid to accommodate a higher penetration of renewable en-
ergy sources besides contributing to sustainability by improving energy efficiency and
the quality of service [2]. With the increase in the interaction between power grids and
communication technologies, power systems have become cyber-physical power systems
(CPPS) that include both power and communication networks. As a result, considering
the interdependence between both networks is essential when studying the performance
of the power or communication networks. Nevertheless, this integration intensifies vul-
nerability and cyber-attack threats [3]. With the increase in the dependency of CPPS on
communication networks, several vulnerabilities can affect the system’s performance in
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terms of communication interruptions, network congestion-induced delay, and packet
loss [4], impacting the power system performance and leading to system failures.

Cyber attackers can adopt cyber-attacks to hack the communication network by ma-
nipulating or blocking the transmitted signals in the form of a false data injection (FDI)
attack or distributed denial of service (DDoS) attack, causing system instability [5]. More
details about FDI attacks are available in [6,7]; this paper focuses on modeling the DDoS
attack behavior and studying its impact on power system performance. DDoS attacks
can cause significant corruption in communication networks by overwhelming them with
excessive traffic from diverse sources. Two types can define the categorization of DDoS at-
tacks; the first is network/transport layer DDoS attacks, which overwhelm the network by
flooding it with traffic. The second is application-layer DDoS attacks targeting higher-layer
protocols [8]. Regarding network/transport layer DDoS attacks, TCP SYN flooding is an
attack created by transmitting excessive TCP SYN connection requests to overwhelm the
server [9]. To start the attack, the attacker sends packets with random source IP addresses,
and each packet has a SYN flag set for creating a connection with the server. Then, the
victim responds to the spoof IP address and stands for authorization, which never comes.
After receiving them, the victim responds to spoof IP addresses and waits for confirmation,
which never comes. Consequently, the TCP SYN packets overwhelm the server, fulfilling
its table, and it cannot accept new connections. As a result, the authorized cannot reach
the server. Turning to the UDP (User Datagram Protocol) flooding, it does not require a
connection setup for transmitting data. Thus, the attacker sends random UDP packets to
the targeted system’s ports [10]. After that, the victim checks which application stands
for the response’s target port. If it does not find anyone, it will send an ICMP packet
to the faked source address with the message of destination unreachability, leading to
system collapse [9]. Thus, cyber-attacks on power systems affect the physical components,
degrade the system’s behavior, and interrupt the communication surface, leading to the
system’s instability. Therefore, while investigating the performance of power systems, it is
necessary to consider the operation characteristics of the communication systems and the
cyber threats [11].

Therefore, simulation is a proper solution for studying the performance of cyber-
physical power systems, including the impact of communication and cyber-attacks on
system performance. MATLAB/Simulink, Power World, and RT-LAB are the most pop-
ular simulation tools for the simulation of power systems. For communication net-
work infrastructures, OMNET++, ns2, ns3, and OPNET are well-known communication
simulators [12]. However, no simulator can simulate both power and communication
networks because their simulation requires separate solvers, for there is a difference in
the dynamic behavior of power and communication networks [13]. Therefore, there is a
necessity for a single platform that combines power and communication networks (co-
simulation). It provides a foundation for investigating various research studies, considering
the impact of communication and cyber risks on the power system operation [14]. The
authors in [15] implemented the integration between Open DSS and ns3 with Mosaik,
highlighting its application for voltage regulation in distribution grids. In [16], based on
high-level architecture (HLA), the work proposed a co-simulation platform called INSPIRE,
where the DIgSILENT Power Factory simulates the power system and OPNET emulates the
communication network. Furthermore, OPAL-RT and OPNET have formed a co-simulation
platform [17] for controlling the load bus voltage in a simple distribution system by switch-
ing the capacitor bank ON/OFF. This study has simulated the percentage of occupancy in
the communication channel using background traffic generators and its effect on the value
of latency. On the contrary, they did not address the impact of changing communication
delays on the performance of the power system.

Microgrids play a crucial role as an integral part of the smart grid, utilizing a variety
of DGs to meet rising energy consumption at the distribution level. They can operate in
grid-connected and islanded modes of operation; particularly, islanded inverter-based
microgrids contribute to power system sustainability by providing a resilient power supply
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and minimizing the reliance on the utility grid [18]. A pivotal aspect of operating these
systems is the control strategy, which is essential in managing the power-sharing between
the DGs within the MG to meet the load requirements under different operating conditions.
Hierarchical control is the current way of controlling MG operation, comprising three
layers of control: primary control, secondary control, and tertiary control [18–23]. The
primary control layer includes the local controllers for all the DGs within the microgrid
for autonomous power-sharing during system operation. In comparison, the secondary
control is responsible for restoring the system frequency/voltage to its rated values under
different conditions. In this paper, we focus on the primary and secondary control layers.
Droop control in the primary control layer controls and preserves the frequency stability
of each inverter within the MG for generating the reference voltage and frequency at
each operating condition [20–24]. It is a communication-less power-sharing control, as
within this layer, each inverter-based distributed generator has its local droop control [22].
However, the frequency deviation caused by the droop control is the major drawback to
using this way of control [23]; introducing a secondary control layer helps eliminate this
deviation [19]. Nevertheless, while operating in real-world scenarios, the communication
network infrastructure between the primary and secondary control layers directly affects
the system response. The communication network characteristics regarding network
topology, data rate, communication latency, and cyber-attack vulnerability impact the MG
control system [25]. Therefore, a recommendation is to study the MGs as cyber-physical
systems to evaluate their performance under various operating conditions, assessing the
cyber vulnerability that affects the sustainability and security of the integrated power and
communication system.

Numerous studies have proposed diverse control strategies for controlling the oper-
ation of microgrids; the authors in [20] developed a detailed work for managing voltage
source converters under an islanding mode of operation based on droop control. In [24],
the authors presented a centralized secondary control scheme for voltage and frequency in
an islanded inverter-based MG. However, they did not mention any analysis regarding the
impact of communication on the proposed scheme. An accurate simulation of frequency
support through elaborate models was demonstrated in [26] by integrating the power
adjustments of prosumers, besides offering an enhancement in MG frequency control, em-
ploying a fuzzy logic-based estimation method. The authors in [27] proposed a centralized
secondary frequency control scheme based on the model predictive control (MPC) method
for an inverter-based MG; however, they did not consider the impact of communication
delay between the implemented MPC-based secondary control and the local controllers.
A frequency restoration algorithm in an islanded MG based on an event-driven method
was developed in [28]. The control mechanism generated the control action by sensing
the change in the load demand and the power generation. In [29], the authors proposed a
power control mechanism for MG, optimized through the combination of the genetic algo-
rithm (GA) and particle swarm (PSO). The proposed scheme proved its effectiveness under
different operating conditions, though they did not include the cyber aspect impact on the
presented analysis. A cascade-forward neural networks-based droop control algorithm for
the inverter-based MG was developed in [30]; the authors proposed real-time experimental
tests. However, they did not introduce the impact of cyberattacks on the proposed system.
Although the previously mentioned proposed control strategies successfully control the
MG and enhance its performance, most research studies have not examined the inverter-
based MG as a cyber-physical system. Furthermore, they have not considered the diverse
impact of communication delays and cyber-attacks on the proposed control schemes.

Upon reviewing the studies mentioned above, there is a research gap, prompting more
exploration in studying the inverter-based MG as a cyber-physical system, including the
impact of communication networks and cyber-attacks on overall system performance. In
addition, there is a need to develop a flexible tool that can be used for several cyber-physical
power system studies, combining both the physical and cyber layers in a single platform.
Considering the above discussion, this paper proposes an innovative approach for assessing
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the frequency performance of an islanded cyber-physical inverter-based microgrid in differ-
ent real-world scenarios. The experimental study incorporates realistic and non-ideal cyber
scenarios using the proposed sophisticated cyber-physical co-simulation platform. The
integration of OPAL-RT and the network simulator ns3 in a single co-simulation framework
offers a flexible platform that can be a basis for several power systems studies as a cyber-
physical system, encompassing real-time simulation of power and communication systems.
RT-LAB has different packages and models, enabling integration with MATLAB/Simulink
and facilitating the simulation of various power system applications. Network simulator
ns3 is an open-source tool that supports the simulation of IP-based communication network
applications. Furthermore, using Docker containers as a virtual interface network enables
seamless data exchange between the local measurements and the secondary controller
through the ns3-based communication model, which is also freely accessible. Thus, the
open-source accessibility nature of both ns3 and Docker containers notably minimizes the
overall computational cost of the proposed approach. Within the proposed cyber-physical
MG, we utilize a centralized secondary control strategy; it runs asynchronously in the
secondary control layer with the primary control layer in the physical system. The central
controller collects information from all the individual DGs’ local controllers within the phys-
ical MG. After that, it sends the control signal back to the local controllers in the primary
control layer via the proposed ns3-based communication network, effectively restoring
the frequency value to its reference. The innovative communication model developed in
this work mimics the communication infrastructure between the primary and secondary
control layers; it enables the examination of MG performance as a cyber-physical system,
including analyzing the impact of communication latency and DDoS attacks on frequency
stability. To summarize, the main contributions of the proposed work are as follows:

• Implementing an innovative cyber-physical co-simulation platform that integrates
OPAL-RT, the network simulator ns3, and Docker containers into a unified, sophisti-
cated platform, providing a sustainable tool to pursue various research studies within
cyber-physical power systems applications.

• Proposing an experimental study targeting the sustainability challenges in cyber-
physical inverter-based microgrids through an innovative way of assessing the fre-
quency stability in different real-world scenarios.

• Developing an innovative ns3-based communication model that adequately represents
the communication infrastructure between the primary and secondary control layers
within the islanded inverter-based microgrid.

• Proposing a distributed denial of service (DDoS) model in real-time operation within
the ns3-based communication surface for assessing sustainable MG operation in
different cyber scenarios regarding communication delays and DDoS attacks.

The remainder of the paper follows this organization: Section 2 presents the pro-
posed architecture of the cyber-physical inverter-based microgrid, including the power
system and communication network modeling. Section 3 demonstrates the modeling of
Distributed Denial of Service (DDoS) attacks in real-time operation. Section 4 presents
the implementation of the proposed cyber-physical co-simulation platform for assessing
the operation of an inverter-based MG. Section 5 delineated four subsections to assess the
MG performance under normal operation, communication delay, and DDoS attacks—the
conclusion in Section 6.

2. The Proposed Architecture of the Cyber-Physical Co-Simulation Platform

The proposed architecture of the cyber-physical inverter-based MG, as Figure 1 il-
lustrates, is the outcome of integrating the microgrid that represents the physical layer
and the communication network as a cyber-physical power system. The inverter-based
MG model was developed with an RT-LAB simulation platform fully integrated with
MATLAB/Simulink, allowing real-time simulation within OPAL-RT.
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This work used the OPAL-RT real-time power systems simulator, the OP4610XG
model, to simulate the inverter-based MG, including the MG model and its local controllers.
In addition, we developed an innovative communication model using network simulator
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software (ns-3.35) to connect the centralized secondary controller, which runs on an external
machine, to the MG model in OPAL-RT. The ns3 software provides a controlled environment
for the experimental evaluation of different communication topologies. All the mentioned
layers are in a single co-simulation platform that combines power and communication
models. Docker containers facilitate the interfacing between the cyber and physical layers;
these behave as proxies to transfer data between the real-time simulation in OPAL-RT and
the communication network nodes in ns3 for information exchange.

2.1. Modeling and Control of an Inverter-Based Microgrid

Figure 2 describes the islanded inverter-based MG structure with its control loops
considered in this study; it includes two parallel DGs equipped with their local controllers.
Within the islanded inverter-based MG, each DG comprises a DC generation source, a
voltage source inverter, an LC filter, and an RL output connector [31]. The modeling of the
inverter-based MG, including the primary and secondary control layers, occurred using
MATLAB/Simulink. In this work, focusing on the islanded inverter-based MG performance
as a cyber-physical system, we simplified the input of the inverter as a DC source [32,33]
to prioritize the investigations of real communication infrastructure impacts and cyber-
attacks. This purposeful simplification omitted the intricate dynamics of renewable energy
sources integrated into the DG system, such as solar variations and wind speed fluctuations,
aligning with the proposed research goal and centering focus on the cyber-physical MG
assessment. The inverters work under voltage control mode as the system works in an
islanded mode, and the voltage and current control loops manage their operation; detailed
equations governing these control loops are available in [30,34]. The two parallel-connected
inverters operate under a droop control loop for power-sharing. The three mentioned
control loops stand for the primary control layer of the MG, as described in Figures 1 and 2.
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Figure 2. Schematic diagram of an islanded inverter-based microgrid with primary and secondary
control loops.

The droop control regulates the system’s frequency and voltage by controlling the
active and reactive powers [31–34], standing as the primary level for frequency regulation
within each inverter as per the present load conditions. It introduces synthetic droop to
derive the reference frequency and voltage while computing the reactive and active output
powers, as outlined in [33,34]. The instantaneous values of the active and reactive powers
are pinst and qinst, respectively, as described in (1); vdq

o and idq
o are the inverter output

voltage and current after the dq-frame transformation. Subsequently, these instantaneous
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values pass through a low-pass filter to calculate the fundamental values of powers P and
Q, as given in (2).

pinst = vd
o id

o + vq
oiq

o

qinst = vq
oid

o − vd
o iq

o
(1)

P =

(
ω f

s + ω f

)
pinst Q =

(
ω f

s + ω f

)
pinst (2)

Introducing an artificial droop in the frequency and output voltage of the inverter, as
shown in (3), facilitates power-sharing among the sources; Pi and Qi are the DG’s active
and reactive output power. ωni and Vni are the reference signals for the system frequency
and voltage, while the desired voltage and frequency are vo, magi and ωi; mpi and nqi are
the active and reactive power droop coefficients.

ωi = ωni − mpiPi

vo,magi = Vni − nqiQi
(3)

We implement centralized secondary control to eliminate the deviations in the sys-
tem’s frequency and voltage from their nominal values during system operation. In this
work, the centralized secondary control layer is based on a conventional PI control scheme
that receives the frequency value from the primary control layer and restores the deviations
in the frequency value, maintaining it at 60 Hz under different operating conditions. This
method allows the restoration of voltage value deviation as well. The PI-based centralized
secondary controller sends the control signals to restore the frequency and voltage devi-
ations ∆ω and ∆v, respectively, as given in (4). For the implemented PI-based frequency
secondary controller, ωre f and ωmeas are the reference and measured frequency values;
Kp f _sec and Ki f _sec are the proportional and integral gains, respectively. Vre f and Vmeas are
the reference and measured voltage values, respectively, while Kpv_sec and Kiv_sec are the
PI-based voltage controller gains. After that, the communication channels send the control
signals to the primary control layer to eliminate the deviations, as introduced in (5).

∆ω = Kp f _sec (ωre f − ωmeas) + Ki f _sec
∫
(ωre f − ωmeas)

∆v = Kpv_sec (Vre f − Vmeas) + Kiv_sec
∫
(Vre f − Vmeas)

(4)

ωi = ωni − mpiPi + ∆ω

vo,magi = Vni − nqiQi + ∆v
(5)

2.2. Modeling of the Communication Network Infrastructure

In this work, using the network simulator (ns3), we developed the emulation of
the communication network for exchanging information between the local controllers in
the physical system and the proposed centralized secondary controller. ns3 is an open-
source network simulator with a highly flexible architecture, enabling users to implement
different communication topologies. It also allows the application of various protocols.
Figure 3 shows the basic architecture of ns3. This software offers a real-time simulation
of actual communication devices, such as switches and routers, enabling the study of the
communication issues impacting power systems, such as latency, package loss, and signal
transmission errors [35].

The communication network model presented in this study comprises two local area
networks (LANs), and the proposed architecture is based on the configuration of the power
system application used in the testing [25,36]. In the ns3-based communication mode, a
node represents each agent/controller in the power system. The first local area network
(LAN-1) contains two nodes representing the local controllers for the two parallel inverters
in the primary control layer. Meanwhile, a node in the second local area network (LAN-2)
represents the centralized controller in the secondary control layer. Each node in the com-
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munication model has an IP address, as presented in Figure 4. Algorithm 1 demonstrates
the development of the ns3-based communication network, mimicking the communication
infrastructure between the central controller in the secondary control layer and each meter-
ing unit in the local controllers in the primary control layer. Based on this algorithm, we
can emulate different communication models with different topologies depending on the
power system application, considering the control algorithm, communication links, and
the number of local measurement units in the physical layer.
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Algorithm 1. Modeling of the ns3-based communication network.

1: Include all the required headers based on the designed network topology.
2: Enable logging in the developed model.
3: Define the global configurations within the model.
4: Identify the number of nodes based on the application; the number is five in this work.
5: Create a node container for each zone:

• LAN-1 container includes three nodes (node-1, node-2, and router-1).
• LAN-2 container includes two nodes (node-3 and router-2).
• The router’s container includes two nodes (router-1 and router-2).

6: Create a communication link between the nodes in the model based on the designed
topology:

• Point-to-point link between LAN-1 and LAN-2.
• Carrier sense multiple access (CSMA) communication topology within each LAN.

7: Assign IP addresses for the previously created nodes in each zone.
8: Set a tab bridge at each node to interface with other devices outside the ns3-based

communication model.
9: Run the simulator.
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2.3. The Interface between the Communication Network and the Physical System

The information exchange between each node in the communication model and the
physical system devices occurs through docker containers. A docker container is a software
package with the features needed to execute an application, as it is lightweight, stan-
dalone, and executable. The isolation of the software from its environment by containers
guarantees that it runs consistently despite variances between development and staging
environments [37]. This feature assesses security and allows different containers to run
simultaneously on a single host. In this work, Docker containers in Linux OS act as proxies
to transfer data between the local control agents in the physical system in OPAL-RT and in
the communication network nodes in ns3. Figure 5 depicts the container’s structure to set
up virtual networks in Linux.
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For interfacing between the two local control nodes in the physical layer and their
corresponding nodes in the communication layer LAN-1, we created two docker containers.
These containers eased access to each node in LAN-1 through the pre-configured tab bridges
in the designed communication model. In addition, shared memory ran with the Linux
operating system in the same machine with the docker containers to enable simultaneous
access to the same memory by different actions. Thus, integrating the docker containers
and the shared memory facilitated the bidirectional data flow between the physical system
and the communication model.

3. Modeling of Distributed Denial of Service (DDoS) Attack

Distributed denial of service (DDoS) against the communication channels between the
control center and the metering units can restrict the data flow from descending to their
intended locations on time by way of distribution or forfeiting the connectivity, affecting the
MG’s performance [10]. The behavior of this attack involves flooding a target computer or
network with traffic coming from multiple sources, seeking to prevent legitimate users from
accessing the targeted system or network by consuming its resources. In the DDoS attack,
using User Datagram Protocol (UDP) flooding represents one of the used techniques. The
attacker conveys many packets to the victim’s destination port. If the sent packets are large
enough, the communication channels may become overburdened, and packets may not be
able to reach their destination. Modeling UDP flooding attacks involves switching UDP
traffic to the intended target point [38]. The attackers might utilize botnets to engage in illicit
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behaviors for hacking devices by sending UDP flooding attacks, causing the interruption
of the targeted point, as Figure 6 depicts.

In this work, The DDoS attack can interrupt the communication channels between
the MG’s centralized secondary control and the local controllers in the primary control
layer within the developed ns3-based communication model, affecting the MG’s frequency
stability. To mimic the DDoS attacks as a real-time simulation in ns3 that represents the
cyber layer in this work, we emulated the UDP flooding behavior in ns3 to represent the
DDoS attack that targeted the central control of the MG. Consequently, this overwhelms the
centralized controller with many UDP packets sent from the attacker bots, increasing the
contingency of the communication channels between the central and local controllers of the
MG. This makes the controllers unable to send or receive any information and affects the
system’s performance. For emulating the DDoS in the developed communication model in
ns3, it is necessary to identify the attack parameters and the application of the attack using
UDP flooding within the communication network topology designed for communication
between the secondary and primary control layers, as described in Algorithm 2.
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Algorithm 2. DDoS attack using UDP flooding

1: Identify the DDoS attack experimental parameters (attack rate, max Bytes, number of bots).
2: Create nodes in the ns3-based communication model to identify the number of attackers’

bots.
3: Create a link using point-to-point communication between the bot nodes and the target

node (central controller node in LAN-2).
4: For each attacker bot node in the model:

• Assign an IP address.
• Define the behavior of the DDoS attack using UDP flooding and install the developed

DDoS application in each created bot node.
• Set the DDoS attack’s start and stop times.

5: Run the simulation.

4. Implementation of a Cyber-Physical Co-Simulation Platform in the FIU Smart
Grid Testbed

The proposed cyber-physical co-simulation platform was implemented on the FIU
smart grid testbed, as demonstrated in Figure 7, with detailed IP addresses corresponding
to each machine. This platform facilitates the assessment of different cyber-physical power
systems with various control algorithms and their communication infrastructure.
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This paper examines the inverter-based MG’s performance as a cyber-physical system
using the proposed co-simulation platform, which integrates the following components:

• Machine 1: OPAL-RT, simulator for real-time simulation of the inverter-based MG,
including all the local controllers of the physical system.

• Machine 2: Linux OS contains ns3 for communication network emulation, shared
memory, and Docker containers to transfer data between OPAL-RT and network nodes
in ns3. Two containers are created to connect to the two communication nodes of
inverters. The UPD/IP protocol is used for interfacing between the communication
model in machine 2 and the physical system that runs on OPAL-RT in machine 1.

• Machine 3: MATLAB/Simulink is used to implement the centralized secondary con-
troller and a Modbus TCP server, then connect to the two developed containers in
machine 2, representing the clients.

Figure 8 shows the data exchange through the proposed co-simulation platform. The
flow of information can be checked throughout the shared memory designed between
OPAL-RT and ns3; this process can be described as follows: in machine 2, we activated the
communication model and established the docker containers. Following this, the power
system model was executed in OPAL-RT (machine 1). Then, the proposed communication
model facilitated the flow of local frequency and voltage measurement signals from OPAL-
RT to the central controller (machine 3). Finally, communication between machine 3,
containing the central controller (server), and machine 2 (clients) was implemented. After
that, the data is exchanged between the controller and OPAL-RT through ns3; the data
mapping is demonstrated in Table 1.
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Table 1. The mapping of data exchange.

Docker Container
Name

IP
Address Device

Signals Modbus Space
on the Server

Position in Memory
Name Data Type

Node 1 10.1.1.21 VSI-1

Meas f1 float 0–1 Output 0

Meas v1 float 2–3 Output 1

Ctrl f float 4–5 Input 0

Ctrl v float 6–7 Input 1

Node 2 10.1.1.22 VSI-2

Meas f2 float 0–1 Output 2

Meas v2 float 2–3 Output 3

Ctrl f float 4–5 Input 2

Ctrl v float 6–7 Input 3

5. Cyber-Physical Inverter-Based Microgrid Implementation and Experimental Results

In this part, we implement the real-time simulation of the islanded inverter-based MG
in OPAL-RT to assess the MG’s frequency control performance as a cyber-physical system.
After that, it was integrated with the communication network emulation implemented in
ns3 to obtain the control signals from the centralized secondary controller. Table 2 shows
the tested MG and its control system parameters, considering that the two DGs have the
same parameters.

Table 2. The MG parameters and the control system’s gains.

Parameters Symbol Value

Filter inductance L f 3.5 mH
Filter capacitance C f 50 µf
Coupling inductance Lc 0.35 mH
Coupling resistance Rc 0.05 Ω
Inner voltage controller proportional gain Kpv 0.285
The microgrid voltage Vrated 110 V
The reference frequency Fre f 60 Hz
Inner voltage controller integral gain Kiv 590
Inner current controller proportional gain Kpc 55
Inner current controller integral gain Kic 1570
Secondary controller proportional gain Kp f _sec 0.08
Secondary controller integral gain Ki f _sec 7
The total connected load Pload_total 13.9 kW
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In this paper, we perform different experimental studies to investigate the MG’s
frequency control performance across various real-world scenarios. The experiments
commenced with a real-time simulation of the proposed MG without the centralized
secondary controller under different loading conditions. Subsequently, communication
links were established between the secondary and primary control layers through the
proposed ns3-based communication model. Finally, we assess the frequency stability
of the MG under communication delays and the emulated DDoS attack that hacks the
central controller.

5.1. Evaluating the MG Performance with the Primary Control Layer

In this section, the real-time examination of the islanded MG involves a connected
load Pload_total shared across two parallel inverters. The MG experienced a step-change
increase in the total connected load by P = 5.8 kW at t = 71 s and subsequently disconnected
at t = 100 s, as shown in Figure 9. Figure 10 illustrates the MG’s frequency response
while operating with the droop control without the secondary control layer. The system
exhibits stability, with the two parallel inverters sharing the load demand and coping with
the load variations without oscillations. However, the droop control cannot eliminate
the frequency deviation ∆f. This deviation affects the connected load, especially when
connecting sensitive loads. Furthermore, for prospective expansions, it is crucial to have a
system with a constant frequency and voltage level without any deviations. This establishes
connectivity with other DGs or MGs as a multi-MG system. Accordingly, appropriate
control techniques and communication infrastructure design are essential to ensure the
DGs’ coordination without any voltage or frequency deviations from their reference values.
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5.2. Assessing the MG’s Stability with the Secondary Control

This section assesses the cyber-physical MG’s operation with the centralized sec-
ondary controller that eliminates system frequency deviations. Beginning from this part
forward, the developed ns3-based communication model establishes the communication
links between the central controller and the physical system in OPAL-RT, encompassing
the communication network features and the cyber vulnerability affecting the system
operation. While operating solely with the primary control layer from t = 0 s, the acti-
vation of the communication model initiates to link the primary and secondary control
layers at t = 36.5 s, assuming ideal communication channels (delay = 2 ms) between LAN-1
and LAN-2. The categorization of this experimental study includes the following four
distinct phases:

• Phase 1 (0–36.5 s): The primary control only (based on droop control).
• Phase 2 (36.5–71 s): The activation of the ns3-based communication model and the

secondary controller are working.
• Phase 3 (71–100 s): A step-up change in the total connected load with a value of

5.8 kW.
• Phase 4 (100–120 s): A step-down change with a value of 5.8 kW.

Figure 11 demonstrates the information flow, including bidirectional data transmission
from the centralized controller node at LAN-2 (IP: 10.1.2.21) to the local controller nodes at
LAN-1 (IP addresses: 10.1.1.21 and 10.1.1.22). As shown in Figure 12, during Phase 1, the
droop control, a well-known method to control parallel inverters within the primary control
layer, allows frequency synchronization at 59.8 Hz with deviations from the reference value.
After activating the centralized secondary control in Phase 2 at t = 36.5 s, the frequency
swiftly returns to the reference value of 60 Hz. Within Phase 3 and Phase 4, regardless of
the additional load connection or disconnection from the MG, the steady-state frequency
remains constant at 60 Hz. Accordingly, this implies that the designed centralized secondary
control, based on the conventional PI controller, can eliminate the frequency deviations
induced while operating with the primary control layer only.
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5.3. Scrutinizing the Impact of Communication Delay on Frequency Response

The communication infrastructure facilitates the control signals broadcasting from the
secondary controller to the local controllers. However, these communication links may
induce delays that can degrade the control performance and affect the system stability.
In this experiment, to evaluate the impact of communication delay on the MG frequency
performance, the assessment involved manipulating the communication delay value within
the innovative communication model between LAN-2 (central controller) and LAN-1
(local controllers). Here, we assessed communication delays of 25 ms, 50 ms, 75 ms, and
100 ms while recording the frequency responses correlated to each value to illustrate how
communication latency influences the MG’s frequency stability, considering the same four
phases of operation stated in the previous case study. Figure 13 depicts the impact of
increasing communication latency between the central and local controllers under different
operating conditions. In Phase 1, the frequency was stable at 59.8 Hz without oscillations;
unfortunately, the MG encountered challenges in precisely tracking the reference frequency,
revealing limitations in the droop control as one of the state-of-the-art control schemes in
controlling multiple parallel inverter-based resources. Although it could effectively manage
the power-sharing between the parallel inverters, it struggled to mitigate the steady-state
deviation during operation.

Subsequently, at t = 36.5 s (Phase 2), the activation of the centralized secondary control,
employing the PI-conventional controller, occurs and accesses the local frequency mea-
surements from the primary control layer via the ns3-based communication channels. It
compares the measured value with the reference frequency (60 Hz), leveraging the integral
term in the PI controller to eliminate the steady-state error in frequency. The commu-
nication links relay the resultant control signal to the primary control layer, rectifying
any frequency response inconsistencies within the parallel inverters. In this experiment,
non-ideal communication channels between the primary and secondary control levels
introduce delays, significantly impacting the transient frequency performance during the
secondary control connection. These delays contribute to amplifying the maximum over-
shoot and longer settling times. Furthermore, the analysis of load variations in Phase 3 and
Phase 4, as presented in Figure 14, depicts that elevating the delay value from 25 ms to 100
ms intensifies frequency oscillations and prolongs the system convergence to the steady
state, especially at delay values of 75 ms and 100 ms during load changes compared to the
ideal communication scenario.
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The experimental results demonstrate that changing communication delay up to
100 ms affects the transient performance of frequency without compromising its stability.
By contrast, instability issues arise when the communication delay exceeds 100 ms and the
system cannot reach the reference value, as depicted in Figure 15, during step changes in
the connected load under a delay of 120 ms. The frequency is critically stable and oscillates
around the reference value. The observed fluctuations in frequency are due to a mismatch
between the control signal transmitted to local controllers and the system’s actual status.
For instance, receiving delayed control signals with high values after the system has already
reached a new state of operation makes the system critically stable. The system will be
unstable if we increase the communication delays above 120 ms.
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Figures 16 and 17 summarize the impact of increasing the communication delay on
frequency transient stability in terms of the settling time and the percentage maximum
peak (%MP) values, respectively. We can notably see that the increasing latency impacts the
transient stability of the proposed system based on the value of the delay in communication
between the secondary and primary levels within the MG. The classification of frequency
stability regions for the system based on delay values involves classifying them into specific
ranges as follows:

• Delay (0–100 ms): The frequency response is stable and can track the reference value
effectively without steady-state errors.

• Delay (100–120 ms): The frequency is critically stable; it oscillates around the reference
value and cannot reach a steady-state value.

• Delay (>120 ms): The frequency response is unstable.

Although the system can reach the reference value during this experimental study,
the PI-based centralized secondary control works with limitations due to its operational
characteristics employing constant gains values that cannot be adapted during the system
operation. Thus, it cannot ensure the system’s stability under different communication
delays. This study proves the need to study the MG as a cyber-physical system through the
proposed co-simulation platform, including the impact of real communication issues, such
as delays, as these affect the overall performance. Furthermore, according to the assessment
experiment’s findings, we can specify this system’s stability ranges. This is a research gap
in MG control studies; they focus more on the control system design without considering
how the communication links in real scenarios would influence the control system. As we
present here, these communication issues must be considered, and the control design for
MG will only be effective practically by considering the communication network.
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5.4. Examining the MG’s Frequency Performance under the DDoS Attack

The communication surface between the central controller and the physical system
is vulnerable to cyber risks. In this test, the communication surface represented by the
ns3-based communication model was exposed to an emulated DDoS attack to assess the
sustainable operation and stability of the MG. Based on Algorithm 2 in Section 3, the
DDoS attack was modeled considering that the number of the attacker bots is ten, and
the centralized secondary controller node is exposed to an emulated UDP flooding DDoS
attack. The operation of the MG under the DDoS attack within the communication surface
is as follows:

• At t = 0 s, the physical system typically starts in OPAL-RT without the secondary control.
• At t = 36.5 s, the centralized secondary controller connects to the physical system via

the proposed communication model.
• At t = 40 s, the emulated attacker starts sending excessive UDP flooding messages,

as presented in Figure 18, from the attacker’s nodes to the centralized control node
in LAN-2 within the ns3-based communication model, demonstrated graphically in
Figure 19.
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While increasing the contingency resulting from UPD flooding through the communi-
cation channels, the centralized controller faces interruptions and cannot send or receive
any packets. This results in a loss of connectivity between the primary and secondary
control layers, as presented in Figure 20. Reducing the number of attacker bots in the
proposed DDoS attack model results in the system acting similarly to its operation under
communication delay, where the central controller can send delayed control signals to the
local controllers. Figure 21 depicts the frequency performance during this test and divides
it into the following four zones:

• Zone A (0–36.5 s): The MG worked based on primary control only; thus, the frequency
was stable but deviated from its nominal value.

• Phase B (36.5–45 s): The established communication model connected the secondary
control layer to the physical layer, eliminating the frequency deviation. At tattack = 40 s,
the DDoS attack commenced; however, it did not impact the system, as it was in a
steady state.

• Zone C (45–70 s): The emulated attack hacked the communication surface, leading
to central controller corruption, as described in Figure 20. However, the absence of
secondary control signals within this zone did not affect the system, as no operating
conditions change needed a control action.

• Zone D (70–100 s): A step-up change occurred at t = 70 s, while the central controller
cannot sense this variation as it is under attack. Consequently, the frequency cannot
remain constant at 60 Hz, and there is a frequency deviation. The system remains
stable but with a frequency deviation value depending on the load change amount,
the same as operation with droop control only.

It is pertinent to mention that the rate at which the DDoS attack affects the MG
stability depends on the system’s status when the attack occurs. Therefore, if the DDoS
attack arises while the MG still has not reached its steady state, it may lead to severe
conditions, jeopardizing the system’s stability. Figure 22 depicts the MG under a DDoS
attack at t = 37 s; meanwhile, the centralized secondary controller connection occurred at
t = 36.5 s, meaning the MG did not reach its steady state. Accordingly, the system loses its
stability due to the mismatch between the value of the control command from the secondary
control layer and the current behavior of the MG’s response in the physical layer.
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6. Conclusions

This study broadens our insights into the sustainability and security challenges in-
trinsic to inverter-based MGs, specifically in cyber-physical systems. Through the metic-
ulous integration of OPAL-RT, ns3, and Docker containers, the developed innovative
cyber-physical co-simulation framework uncovers the MG vulnerabilities, emphasizing
the importance of exposing the MG control system to cyber threats for ensuring secure
and sustainable operation. The experimental results depict the effectiveness of using the
secondary controller, eliminating the steady-state error of the system’s frequency and forti-
fying the MG’s flexibility for scalable future expansions. Notably, the proposed ns3-based
communication model emerges as a robust base for assessing the frequency stability of
an islanded inverter-based MG under real-time communication delays and DDoS attacks.
Real-time simulations demonstrate the impact of changing the communication delay on
the frequency transient stability, offering insights into the stability and instability regions
and highlighting the adverse effect of heightened delays, causing system destabilization.

Furthermore, the assessment of the MG’s frequency response under the emulated
DDoS attack highlights its impact on the MG’s performance. It shows that the DDoS attack
will impact the system based on the status of the physical system when the attack occurs. In
addition, the proposed platform serves as a sustainable tool for examining communication
effects on MG control and assessing vulnerability to cyber-attacks, forming a foundation for
future studies of various cyber-physical power system applications. These findings offer
insights into the vulnerability studies for inverter-based MGs, guiding the design of secure
communication networks and resilient control strategies to enhance MG performance.
In future work, we aim to develop an adaptive resilient control scheme to enhance the
microgrid performance under communication delays and cyber-attacks. This addresses the
adaptability limitations of the proposed PI-based conventional control scheme, which relies
on fixed gains that cannot adjust under cyber-severe real-time conditions. Additionally,
through the implemented cyber-physical platform, we can expand the proposed microgrid
system into multi-microgrids with the proper design of their corresponding communication
model, addressing the challenges in their operation as cyber-physical systems.
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