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Abstract: A wide variety and large number of bacterial species live in the gut, forming the gut
microbiota. Gut microbiota not only coexist harmoniously with their hosts, but they also induce
significant effects on each other. The composition of the gut microbiota can be changed due to
environmental factors such as diet and antibiotic intake. In contrast, alterations in the composition
of the gut microbiota have been reported in a variety of diseases, including intestinal, allergic, and
autoimmune diseases and cancer. The gut microbiota metabolize exogenous dietary components
ingested from outside the body to produce short-chain fatty acids (SCFAs) and amino acid metabolites.
Unlike SCFAs and amino acid metabolites, the source of bile acids (BAs) produced by the gut
microbiota is endogenous BAs from the liver. The gut microbiota metabolize BAs to generate
secondary bile acids, such as lithocholic acid (LCA), deoxycholic acid (DCA), and their derivatives,
which have recently been shown to play important roles in immune cells. This review focuses on
current knowledge of the role of LCA, DCA, and their derivatives on immune cells.
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1. Introduction

The mucous membranes of the oral cavity, stomach, gut, and skin form the boundary
between the inside and outside of the human body. These mucosal and skin surfaces are
inhabited by numerous bacteria [1,2]. In particular, a wide variety and large number of bac-
terial species live in the gut and form the gut microbiota. The estimated number of bacterial
cells in the human body is approximately 3.8 × 1013 [1]. Furthermore, the estimated number
of human cells is approximately 3 × 1013. Thus, the number of bacteria in the human body
is equivalent to the number of human cells. In addition, the total mass of bacteria in the
human body is estimated to be approximately 0.2 kg [1]. Although a wide variety of bacte-
ria are present in the human gut microbiota, the predominant bacteria are Bacteroidetes,
Firmicutes, Actinomycetes, Proteobacteria, and Velcomicrobia at the phylum level. More-
over, the environments of the small and large intestines are significantly different, with
varying types of intestinal bacteria inhabiting each part. More specifically, the predominant
bacterial families in the small intestine are Lactobacillaceae and Enterobacteriaceae, while
those in the colon are Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae, and
Ruminococcaceae [3]. Human gut microbiota and humans not only coexist, but they also
influence each other. The composition of the gut microbiota in humans can be affected by
environmental factors such as diet and antibiotic intake. The development of metagenomic
analysis of the gut microbiota has allowed researchers to perform comparative analyses of
the gut microbiota between healthy and diseased individuals, who have in turn identified
a correlation between various diseases and changes in the gut microbiota composition.
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For instance, alterations in the composition of the gut microbiota have been reported in
a variety of diseases, including intestinal diseases (e.g., inflammatory bowel disease and
colorectal cancer), liver diseases (e.g., nonalcoholic fatty liver disease and liver cancer),
systemic metabolic diseases (e.g., diabetes and atherosclerosis), immune-related diseases
(e.g., allergic and autoimmune diseases), and neuropsychiatric diseases (e.g., Alzheimer’s
and depression) [4–6]. In addition, changes in the composition of gut microbiota have
been associated with the persistence of symptoms in many patients with post-coronavirus
disease 2019 (COVID-19) symptoms, also known as acute post-COVID-19 syndrome (PACS)
or long-term COVID [7–9].

However, various metabolites produced by the activity of the gut microbiota have
also been found to affect their respective hosts. The gut microbiota metabolize exogenous
dietary components ingested from outside the body to produce short-chain fatty acids
(SCFAs), such as propionic acid, butyric acid, and acetic acid, and amino acid metabolites,
such as serotonin (5-HT), dopamine, histamine, and gamma-amino butyric acid (GABA).
These SCFAs have a variety of important physiological and pathological roles [10,11]. In
addition, 5-HT, dopamine, histamine, and GABA, which are involved in neurotransmission,
are produced by the gut microbiota as amino acid metabolites [12,13].

Unlike SCFAs and amino acid metabolites stemming from diets, bile acids (BAs) are
synthesized from cholesterol in the liver (Figure 1). The newly produced BAs in the liver
are called primary BAs, and chenodeoxycholic acid (CDCA) and cholic acid (CA) are the
major primary BAs in humans [14,15]. In addition to these two BAs, previous research has
shown that muricholic acids and hyocholic acids are produced in mice [15,16] and pigs [17],
respectively. The gut microbiota metabolize these primary BAs to produce secondary
bile acids, such as lithocholic acid (LCA), deoxycholic acid (DCA), and ursodeoxycholic
acid (UDCA) [18–20], which play important roles in mitochondria and autophagy at the
cellular level [21,22]. Furthermore, they are physiologically and pathologically important
to the host as well as to the composition of the gut microbiota [14,23]. In particular, among
secondary BAs, LCA, DCA, and their derivatives have recently been shown to have a
significant effect on immune cells [24–30]. This review focuses on current knowledge of the
role of LCA, DCA, and their derivatives on immune cells.
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and amino acid metabolites, such as serotonin (5-HT), dopamine, histamine, and gamma-amino
butyric acid (GABA). The gut microbiota also metabolize endogenous bile acids (BAs). Cholesterol is
converted to cholic acid (CA) or chenodeoxycholic acid (CDCA) in the liver. These newly produced
BAs in the liver are called primary BAs, which are then conjugated with glycine or taurine (G/T).
Conjugated primary BAs are secreted into the intestine upon food intake, and they are subsequently
deconjugated and then converted to secondary BAs. Approximately 95% of BA in the intestine is
reabsorbed and transported to the liver, while the remaining BA is excreted in the feces. A portion of
BA reabsorbed from the intestine is transferred to the systemic circulation.

2. LCA, DCA, and Their Derivatives from Gut Microbiota

Primary BAs, such as CDCA and CA, are primarily synthesized in the liver from choles-
terol via two synthetic pathways, namely the classical (or neutral) pathway and the alternative
(or acidic) pathway [14,31]. More than 16 enzymes, including cytochrome P450 7A1 (CYP7A1),
CYP8B1, and CYP27A1, are involved in primary BA synthesis in the liver [32,33]. Primary BAs
are then conjugated with glycine or taurine by bile acid-CoA amino acid N-acyltransferase
in the liver [34], and they are transferred to hepatic bile canaliculi via the bile salt export
pump or multidrug resistance-associated protein 2. Consequently, BAs in the gallbladder are
secreted into the small intestine in response to food intake [35,36], whereas glycine or taurine-
conjugated BAs are deconjugated by bile salt hydrolases (BSHs) in gut bacteria (Figure 2) [37].
Various gut bacteria in the ileum and colon, including Lactobacillus, Bifidobacterium, Enterococ-
cus, Clostridium, and Bacteroides spp., have been shown to possess BSH enzyme activity [38–43].
Lachnoclostridium scindens (formerly Clostridium scindens), Peptacetobacter hiranonis (formerly
Clostridium hiranonis), and Lachnoclostridum hylemonae (formerly Clostridium hylemonae) can
7α-dehydroxylation of BAs. 7α-dehydroxylation of the CDCA and CA is carried away by
enzymes encoded in the bile acid-inducible (bai) operon to produce 3-oxo-∆4-LCA and 3-
oxo-∆4-DCA, respectively [19,20,44]. Both 3-xo-∆4-LCA and 3-oxo-∆4-DCA are intracellular
intermediates that are not released in appreciable amounts into the environment.

There are both direct and indirect pathways to produce alloBAs, which are essentially
BAs with a flat shape due to the trans-orientation of the A and B rings of BAs [45]. On the
one hand, the direct pathway is conducted by a single bacterial strain, while on the other
hand, the indirect pathway is carried out by multiple bacterial strains [19,45]. In the direct
pathway, 5α-reductase and BaiA1 (3α-hydroxy bile acid-CoA-ester 3-dehydrogenase 1)
convert 3-oxo-∆4-LCA and 3-oxo-∆4-DCA to alloLCA and alloDCA, respectively. AlloDCA
is subsequently converted to isoalloDCA by 3α-HSDH and 3β-HSDH in Lachnoclostridium
scindens. In addition, isoalloLCA can be indirectly produced from 3-oxo-LCA by eleven
bacterial genera, namely Bacillus, Bacteroides, Bifidobacterium, Catenibacterium, Collinsella, Eg-
gerthella, Lachnospira, Lactobacillus, Parabacteroides, Peptoniphilus, and Mediterraneibacter [29].
Moreover, a mixture of Lachnoclostridium scindens, which can produce LCA from CDCA [46],
Eggerthella lenta, which can produce 3-oxo-LCA from LCA [47], and Parabacteroides merdae,
which can produce isoalloLCA from 3-oxo-LCA [29] can synthesize isoalloLCA from LCA.
In addition, 5β-reductase, 5α-reductase, and 3β-HSDH enzymes can synthesize isoalloLCA
from 3-oxo-LCA, while 3-oxo-∆4-LCA can be produced from 3-oxo-LCA by 5β-reductase.
3-oxo-alloLCA is then produced from 3-oxo-∆4-LCA by 5α-reductase. IsoalloLCA is pro-
duced from 3-oxo-alloLCA by 3β-HSDH [29,48]. 5α-reductase converts 3-oxo-∆4-DCA to
3-oxo-DCA and 5β-reductase converts 3-oxo-∆4-DCA to 3-oxo-alloDCA. 3α-HSDH con-
verts 3-oxo-DCA and 3-oxo-alloDCA to DCA and alloDCA, respectively [19,45]. IsoDCA
and isoLCA are generated from DCA and LCA by 3β-HSDH, respectively [20]. The chemical
structures of LCA, DCA, and their derivatives are shown in Figure 3.

Approximately 95% of BA in the intestine is reabsorbed and transported to the liver,
and the remainder is excreted in the feces. LCA can be sulfonated and converted to LCA
3-sulfate (LCA-3-S) by sulfotransferase in the liver [49,50].
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Figure 2. The metabolism of bile acids by gut microbiota to produce LCA, DCA, and their derivatives.
In the intestine, glycine or taurine-conjugated primary BAs (CDCA and CA) are deconjugated by
gut bacteria. CDCA and CA are then converted to 3-oxo-∆4-LCA and 3-oxo-∆4-DCA, respectively.
(a) 3-oxo-∆4-LCA and 3-oxo-∆4-DCA are converted to 3-oxoLCA and 3-oxoDCA, respectively, which
are then converted to LCA and DCA, respectively. There are direct (b) and indirect (c) pathways to
produce alloBAs. The direct pathway is conducted by a single bacterial strain, while the indirect
pathway is carried out by multiple bacterial strains. In the direct pathway (b), 3-oxo-∆4-LCA and
3-oxo-∆4-DCA are converted to alloLCA and alloDCA, respectively, which are in turn converted to
isoalloLCA and isoalloDCA, respectively. In the indirect pathway (c), 3-oxo-∆4-LCA and 3-oxo-∆4-
DCA are converted to LCA and DCA, and then to 3-oxo-∆4-LCA and 3-oxo-∆4-DCA, respectively.
3-oxo-∆4-LCA and 3-oxo-∆4-DCA are then converted to alloBAs.
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3. Role of LCA, DCA, and Their Derivatives on Immune cells
3.1. Antigen-Presenting Cells and Helper T Cell Subset

A cluster of differentiation (cd) molecules are extracellular proteins of T cells. T cells are
broadly classified into helper T (Th) cells, which express CD4, and cytotoxic T lymphocytes
(CTLs), which express CD8. T cells that have just emerged from the thymus to peripheral
tissues that have not yet encountered antigens are called naïve T cells. The differentiation
of naïve Th CD4+ cells into various Th cell subsets begins when naïve CD4+ Th cells
encounter antigen-presenting cells (APCs), such as dendritic cells (DCs) or macrophages.
The subsets of CD4+ Th cells can be classified according to the extracellular marker proteins,
transcription factors, nuclear receptors, and cytokines that they produce [51]. CD4+ Th
cells are activated by the interaction between APC and naïve CD4+ Th cells, a process
comprising a major histocompatibility complex (MHC) class II molecule on an APC, which
interacts with a T cell receptor on a naïve CD4+ Th cell. The MHC in humans is referred
to as human leukocyte antigen (HLA), and HLA class II molecules consist of HLA-DP,
HLA-DQ, and HLA-DR [52]. Naïve CD4+ Th cells can be differentiated into various CD4+

Th cell subsets via their interaction with APCs [53–55]. However, in addition to antigen
presentation and recognition, T cell activation also requires co-stimulatory signaling. These
co-stimulatory signaling pathways, also known as immune checkpoint pathways, are
essential for the interactions between APCs and T cells, which subsequently facilitate the
activation, proliferation, and differentiation of a naïve CD4+ Th cell. CD40, CD80, and
CD86 are co-stimulatory molecules that provide co-stimulatory signals between APCs and
CD4+ Th cells. CD40, also known as TNF Receptor Superfamily Member 5, is expressed
on APCs, and its ligand is CD40 ligand (CD40L), also known as CD154, TNF ligand
superfamily member 5, or TNF-related activation protein, is expressed on CD4+ Th cells.
In addition, CD80, also known as B7-1, and CD86, also known as B7-2, are members
of the B7 family of checkpoint proteins expressed on APCs, and their specific ligand is
CD28 [56,57]. In addition, specific cytokines, which are secreted by DCs and other cells,
induce stable expression of transcription factors and nuclear receptors (master regulators)
that determine the differentiation of naïve T cells into specific Th subsets. CD4+ Th cell
subsets include T helper 1 (Th1) [58], Th2 [58], Th9 [59,60], Th17 [61], Th22 [62], follicular
helper T (Tfh) [63,64], and T-regulatory (Treg) cells [65,66]. LCA, DCA, and their derivatives
have been shown to play crucial roles in influencing APCs (DCs and macrophages) (Table 1)
and CD4+ Th cell subsets (Th1, Th17, and Treg cells) (Table 2). Essentially, APCs, Th1 cells,
and Th17 cells promote immune responses, while Treg suppresses their responses [67].
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Table 1. Bile acids and antigen-presenting cells.

Antigen-Presenting Cells Bile Acids That Affect
Antigen-Presenting Cells

Receptors for Bile
Acids Effects of Bile Acids

Dendritic cells DCA, LCA TGR5, FXR Inductin of Th1 and Th17 differentiation
isoDCA FXR Inductin of Treg differentiation

Macrophages LCA, TLCA TGR5 Cytokine and chemokine secretion

Table 2. Bile acids and helper T cell subsets.

T Cell
Subsets

Differentiation
Regulators

Characteristic
Cytokines Functions

Bile Acids
That Affect

T Cell
Differentiation

Receptors
for Bile
Acids

Effects of Bile
Acids

Th1 T-bet, STAT1,
STAT4

IL-2, TNFα,
IFNγ

cellular immunity,
elimination of

intracellular parasites
LCA VDR Th1

differentiation

Th17 RORγt, STAT3 IL-17A, IL-17F,
IL-22

host defense against
extracellular
pathogens,

barrier protection

3-oxoLCA,
LCA-3-S RORγt Th17

differentiation

Treg FoxP3, STAT5 IL-10, IL-35,
TGF-β

suppressing immune
responses,

maintaining immune
tolerance

isoallo LCA NR4A1 Treg
differentiation

3.2. Role of LCA, DCA, and Their Derivatives on DCs

Feeding diets containing DCA and LCA have been shown to reduce Th1 cells, Th17
cells, and CD11c+ MHC class II high DCs in the spleen of experimental autoimmune uveitis
model mice. Moreover, DCA has been found to inhibit the secretion of proinflammatory
cytokines, such as IL-1β, IL-6, IL-12, IL-23, and TNF-α, from lipopolysaccharide (LPS)-
activated DCs [28]. DCA also inhibits the expression of CD40, CD80, CD86, and MHC
class II in mouse DCs, but also the expression of CD40, CD86, and HLA-DR, which is
a HLA class II molecule, in human DCs [28]. Although LPS-activated DCs induce the
differentiation of naïve CD4+ T cells into Th1s or Th17s, DCA treatment impedes Th1
and Th17 differentiation [27]. In addition, DCA induces Takeda G protein receptor 5
(TGR5), also known as G protein-coupled bile acid receptor 1 (GPBAR1) or membrane-
type receptor for bile acids (M-BAR), in LPS-activated DCs and inhibits the activation of
nuclear factor-κB (NF-κB) via activation of TGR5 [27]. Thus, suppression of NF-κB activity
via TGR5 activation by DCA may inhibit the expression of proinflammatory cytokines,
such as IL-1β, IL-6, IL-12, and TNF-α, and cell surface markers, including CD40, CD80,
CD86, MHC class II, and HLA-DR, in DCs (Figure 4) [27]. Moreover, LCA induces TGR5
and farnesoid X receptor (FXR), also known as NR1H4 [68], in DCs and inhibits the
expression of proinflammatory cytokines, such as IL-1β, IL-6, IL-12, IL-23, and TNF-α,
cell surface markers, including CD40, CD80, CD86, and MHC class II, via TGR5 in DCs.
In addition, LCA-treated DCs impede the differentiation of naïve CD4+ Th cells into Th1
or Th17. In contrast, LCA inhibits the expression of proinflammatory cytokines via FXR.
However, TGR5-mediated suppression of inflammatory cytokine expression by LCA is
more potent than FXR-mediated suppression of inflammatory cytokine expression by LCA
(Figure 4) [28].
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Figure 4. Role of LCA, DCA, and their derivatives on immune cells. Dendritic cells (DCs): DCA
inhibits DC activity via TGR5, which in turn impedes the expression of proinflammatory cytokines,
such as IL-1β, IL-6, IL-12, and TNF-α, and differentiation of naïve CD4+ Th cells into Th1 and Th17.
LCA inhibits the expression of proinflammatory cytokines via TGR5 and FXR, and LCA-treated
DCs reduce the differentiation of naïve CD4+ Th cells into Th1 or Th17 cells. In contrast, isoDCA
induces Treg differentiation in the presence of DCs via FXRs in DCs. Macrophages (Mϕ): LCA
and taurine-conjugated LCA (TLCA) inhibit the expression of proinflammatory cytokines via TGR5.
TLCA also inhibits the expression of chemokines, such as CCL2, CCL 3, CCL4, CCL5, CXCL9, and
CXCL10 from macrophages via TGR5. In addition, LCA decreases the expression of hepatic M1
macrophages, which are responsible for the manifestation of proinflammatory effects, and increases
hepatic M2 macrophages, which are responsible for anti-inflammatory effects. Th1 cells: LCA inhibits
the differentiation of Jurkat cells into Th1 cells by inhibiting T-bet expression. In addition to VDR,
this inhibition may involve other receptors (?) as well. Th17 cells: 3-oxoLCA and LCA 3-sulfate
(LCA-3-S) inhibit the transcription activity of RORγt and Th17 differentiation with reduced IL-17a
production. Treg cells: Human FOXP3 and mouse Foxp3 gene promoter regions are located in region
of approximately 500 base pairs (bp) upstream of the transcription start site (TSS). In addition to the
FOXP3 promoter region, the conserved noncoding sequences (CNSs), CNS0, CNS1, CNS2, and CNS3,
contribute to the promotion of FOXP3 gene expression. IsoalloLCA increases mitochondrial reactive
oxygen species (mtROS) levels, which in turn increases acetylated histone 3 lysine 27 (H3K27Ac) in
the promoter region of the FoxP3 gene, leading to the induction of the FoxP3 gene. In addition, the
increase in H3K27Ac levels in the promoter region by isoalloLCA is dependent on the presence of
CNS3. IsoalloLCA also induces Foxp3 expression and Treg differentiation via NR4A1, and NR4A1
binds to 00 bp upstream of the Foxp3 transcriptional start site.

IsoDCA leads to CD4+ T cell differentiation into Tregs in the presence of DCs, which,
although dependent on FXR in the DCs, does not depend on naïve CD4+ Th cells. Despite
the fact that the detailed mechanism by which isoDCA induces Treg differentiation is un-
known, it is believed that isoDCA induces Treg cells by repressing genes whose expression
is regulated by FXR in DCs (Figure 4) [24].
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3.3. Role of LCA, DCA, and Their Derivatives on Macropahges

LCA and DCA both inhibit the secretion of TNFα from human macrophages, which
are differentiated from human monocytes by the macrophage colony-stimulating factor
and IFN-γ [69]. Furthermore, LCA significantly inhibits IL-1β secretion from mouse
macrophages activated by nigericin, which induces IL-1β and IL-18 secretion via the Nod-
Like Receptor family pyrin domain containing 3 (NLRP3) inflammasome [70,71] and LPS.
The inhibition of IL-1β secretion by LCA and taurine-conjugated LCA (TLCA) is mediated
by TGR5 (Figure 4) [25]. In contrast, DCA and taurine-conjugated DCA (TDCA) induce
IL-1β secretion from mouse and human macrophages activated only by LPS [72]. TLCA
also inhibits the expression of cytokines, such as IL-12 and TNFα, from LPS-activated
human macrophages and also the expression of chemokines, CCL2, CCL 3, CCL4, CCL5,
CXCL9, and CXCL10 from LPS-activated human macrophages. Downregulation of these
chemokines by TLCA is regulated via the PKA pathway, which is likely activated by TGR5,
but not the EPAC pathway (Figure 4). In addition, TLCA inhibits the migration of human
NK cells to LPS-activated human macrophages [73].

Oral administration of LCA in mice changes the population of hepatic Kupffer cells
(KCs), which are intraperitoneally injected with carbon tetrachloride (CCl4). Furthermore,
LCA decreases hepatic M1 macrophages and increases hepatic M2 macrophages, which
are responsible for the development of proinflammatory and anti-inflammatory effects,
respectively (Figure 4) [74].

3.4. Role of LCA and DCA on Th1 Cells

Th1 cells mainly secrete interleukin-2 (IL-2), tumor necrosis factor α (TNF-α), and
interferon (IFN)-γ, and they are involved in cellular immunity and the elimination of
intracellular parasites. T-bet, also known as T-box transcription factor 21, signal transducer
and activator of transcription 1 (STAT1), and STAT4 are involved in the differentiation of
naïve CD4+ Th cells into Th1 cells and sustention to be Th1 cells. T-bet is considered a
master regulator of Th1 cells [75].

LCA inhibits the expression of proinflammatory cytokines, such as IFNγ and TNFα,
in Jurkat cells (human immortalized T lymphocyte cells) activated by phorbol myristate
acetate (PMA)/ionomycin, mouse naïve CD4+ Th cells activated by PMA/ionomycin,
and human naïve CD4+ Th cells activated by the CD3/CD28/CD137-coated Dynabeads
T-activator [76]. LCA also impedes the differentiation of Jurkat cells into Th1 cells by
inhibiting STAT1 and T-bet expression. These transcription factors are responsible for the
differentiation of CD4 Th cells into Th1 cells and for IFNγ induction [77,78]. Jurkat cells
express certain receptors for BAs, namely S1PR2, PXR, and VDR. VDR knockdown by small
interfering RNA (siRNA) results in partial rescue from IFNγ and T-bet inhibition in Jurkat
cells activated by PMA/ionomycin. S1PR2 activates kinases, including extracellular signal-
regulated kinase 1 (ERK1) and ERK2, by phosphorylation [30]. However, LCA inhibits the
phosphorylation of both ERK1 and ERK2 [76]. Thus, the inhibition of differentiation into
Th1 cells by LCA may involve other receptors along with VDR (Figure 4). In addition, LCA
and DCA decrease the spleen weight of mice and also decrease the number of Th1 and
Th17 cells in the spleen [27].

3.5. Role of LCA, DCA, and Their Derivatives on Th17 Cells

Th17 cells mainly secrete IL-17A, IL-17F, and IL-22. Th17 cells play crucial roles in
host defense against extracellular pathogens, particularly in mucosal and epithelial barriers.
In contrast, abnormal activation of Th17 cells is associated with various autoimmune
diseases, such as Crohn’s disease, rheumatoid arthritis, psoriatic arthritis, and multiple
sclerosis [79]. Retinoid-related orphan receptor gamma t (RORγt) and STAT3 are involved
in the differentiation of naïve CD4+ Th cells into Th17 cells and the sustention to be Th17
cells. RORγt is considered a master regulator of Th17 cells. The differentiation of Th17 cells
in the intestine is mediated by gut bacteria and their metabolites, such as secondary BAs
and SCFAs [80–82].
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3-Oxo-LCA binds to RORγt, inhibiting its transcription activity. In addition, 3-oxo-
LCA selectively inhibits Th17 differentiation with reduced IL-17a production. In contrast,
the binding affinity of structurally similar BAs, 3-oxo-CA and 3-oxo-DCA, is approximately
20-fold weaker than that of 3-oxo-LCA. In addition, 3-oxo-CA and 3-oxo-DCA slightly
inhibit differentiation into Th17 cells. Therefore, 3-oxo-LCA can inhibit Th17 differentiation
by binding to and inhibiting RORγt (Figure 4). In contrast, 3-oxo-LCA has no effect on Th1
or Th2 differentiation [26]. It has been recently reported that the binding ability of LCA
3-sulfate (LCA-3-S) to RORγt is more potent than that of 3-oxo-LCA. Moreover, LCA-3-S
inhibits Th17 differentiation via binding to RORγt (Figure 4). However, LCA-3-S has no
effect on the differentiation of Th1, Th2, and Treg cells [83].

3.6. Role of LCA, DCA, and Their Derivatives on Treg Cells

Tregs mainly secrete suppressive cytokines, such as IL-10, IL-35, and transforming
growth factor-β, and play important roles in suppressing immune responses as well as
establishing and maintaining immune tolerance. There are three types of Tregs, namely
thymus-derived Tregs (tTregs), peripherally derived Tregs (pTregs), and in vitro-induced
Tregs (iTregs). Forkhead box P3 (FoxP3), which is a transcription factor and a master
regulator of Tregs, and STAT5 are involved in the differentiation of naïve CD4+ Th cells
into Tregs and the sustention to be Tregs. Tregs suppress immune responses by secreting
suppressive cytokines, directly suppressing effector T cells, which are activated Th cells and
CTLs, starvation of cytokines from T effector cells, such as IL-2, and modulating maturation
and function of APCs [84]. The induction of differentiation to Tregs in the gut is essential
for the establishment of immune tolerance to gut bacteria, a symbiotic relationship between
host and gut bacteria, and maintaining the gut microbiota. In addition, the induction of
Tregs in the gut is essential for facilitating tolerance against food antigens.

IsoalloLCA selectively upregulates the expression of FoxP3 via the induction of FoxP3
mRNA in mouse naïve CD4+ Th cells (Figure 4) [26,29]. However, other LCA derivatives,
such as isoLCA and alloLCA, have not been found to enhance FoxP3 expression in mouse
naïve CD4+ Th cells [26]. 3-oxo-alloLCA, which is an intermediate metabolite that produces
isoalloLCA from CDCA, can weakly induce FoxP3 expression and differentiation into Treg
cells [29]. Human FOXP3 and mouse Foxp3 gene promoter regions are located in a region of
approximately 500 base pairs (bp) upstream of the transcription start site (TSS) [85,86]. In
addition to the FOXP3 promoter region, the conserved noncoding sequences (CNSs), CNS0,
CNS1, CNS2, and CNS3, contribute to the promotion of FOXP3 gene expression. CNS0
is located upstream of the promoter region and functions as an inducer and stabilizer of
FOXP3 gene expression. CNS1 and CNS2 are located between TSS and exon 1 of the FOXP3
gene, and they are responsible for FOXP3 gene induction and stabilizing FOXP3 gene
expression, respectively. In contrast, CNS3 is located in the first intron of the FOXP3 gene,
and it is responsible for the induction of FOXP3 gene expression [87–92]. Acetylated histone
3 lysine 27 (H3K27Ac) is an active epigenetic modification of histone H3, which has been
found to increase in the promoter region, CNS1, CNS 2, and CNS 3 in Treg cells. The increase
in H3K27Ac levels in the promoter region depends on the presence of CNS3 [93]. Although
isoalloLCA treatment induces FoxP3 without any CNS1 and CNS 2 requirement, CNS3 is
essential for FoxP3 induction by isoalloLCA [26]. Despite the fact that isoalloLCA treatment
has no effect on cytoplasmic ROS levels, it induces the production of mitochondrial reactive
oxygen species (mtROS), and differentiation into Treg cells by isoalloLCA is dependent
on mtROS. In addition, mtROS induced by isoalloLCA are responsible for the increased
levels of H3K27Ac in the FoxP3 promoter region. Thus, isoalloLCA increases mtROS levels,
which in turn increases H3K27Ac in the promoter region of the FoxP3 gene, leading to
the induction of the FoxP3 gene (Figure 4). In addition, isoalloLCA has been shown to
have no effect on the differentiation of naïve CD4+ Th cells into Th1 or Th2 cells [26]. The
NGFI-B-responsive element (NBRE, AAAGGTCA, or TGACCTTT) is the nuclear receptor
subfamily 4 group A (NR4A) family-binding site [94,95]. NBREs were identified by Assay
for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) when
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naïve CD4+ T cells were treated with isoalloLCA to induce Treg differentiation. The NR4A
family consists of NR4A1, also known as NUR77 or nerve growth factor-induced-B (NGFI-
B) [29], NR4A2, also known as NURR1 [96], and NR4A3, also known as neuron-derived
orphan receptor 1 [97]. IsoalloLCA induces Foxp3 expression and Treg differentiation via
NR4A1, as opposed to NR4A2 or NR4A3, and NR4A1 binds to 500 bp upstream of the
Foxp3 transcriptional start site, leading to the expression of Foxp3 (Figure 4) [29].

4. Concluding Remarks

LCA, DCA, and their derivatives are produced by the gut microbiota and function as
signaling molecules that regulate immune cells, including DCs, macrophages, Th1 cells,
Th17 cells, and Tregs, whose activities are directly associated with immune responses.
The potential imbalance among immune cells is related to the development of various
diseases, such as autoimmune and metabolic disorders [67,79]. Therefore, LCA, DCA, and
their derivatives influence, either positively or negatively, the manifestation of diseases
related to immune responses. Centenarians have unique gut bacteria that produce LCA
derivatives, such as iso-, 3-oxo-, allo-, 3-oxo-allo-, and isoalloLCA. Thus, it is considered
that longevity could be associated with BAs [48]. Senescent cells are a cause of age-related
inflammation, and they are considered responsible for a variety of age-related diseases.
Recent studies have shown that senescent cells disproportionally express programmed
cell death ligand 1 (PD-L1), which is a ligand of the programmed cell death 1 (PD-1)
immune checkpoint molecule, while senescent cells expressing PD-L1 accumulate with
age. Senescent cells expressing PD-L1 are not eliminated because PD-L1 allows them to
escape immune surveillance from CD8+ T cells [98]. PD-L1 expression is regulated by a
variety of transcription factors and nuclear receptors, of which NF-κB is a major inducer
of PD-L1 expression [56,99]. DCA inhibits the activation of NF-κB via triggering TGR5.
In contrast, FXR activation increases PD-L1 expression [100]. Therefore, it is considered
that BAs that have the ability to bind to TGR5 and/or FXR may not only regulate PD-L1
expression but also immune responses and senescence. Nuclear receptors and G protein-
coupled receptors (GPCR) include orphan receptors whose endogenous ligands have not
been identified yet [97,101]. BAs and their derivatives have a steroid structure, which is
similar to the structure shown by various ligands for nuclear receptors. Moreover, BAs
and their derivatives also act as ligands for GPCRs, such as TGR5. In addition, LCA, DCA,
and their derivatives are ligands of orphan nuclear receptors, such as RORγt, NR4A1,
and NR4A2 [97]. Therefore, it is essential to reevaluate the metabolites of BAs from
the gut microbiota because they may act as ligands for various nuclear and cell surface
receptors. Because microorganisms and their metabolites are closely related to human
health and longevity, further investigations on microorganisms and their metabolism are
highly expected.
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