

Asian Journal of Soil Science and Plant Nutrition

Volume 9, Issue 4, Page 120-131, 2023; Article no.AJSSPN.104946 ISSN: 2456-9682

Varietal Response of Cola Species to Fertilizer Application on Field Establishment, Growth, Development and Canopy Characteristics

Famuwagun Idowu Babadele^{a*}, Medinat Idowu Akeredolu^a and Olaiya Peter Aiyelari^a

^a Federal University of Technology, Akure, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJSSPN/2023/v9i4198

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/104946

Original Research Article

Received: 25/06/2023 Accepted: 31/08/2023 Published: 11/09/2023

ABSTRACT

Responses of *Cola nitida* and *Cola acuminata* to NPK and Super-gro fertilizers on seedling development, field establishment, and canopy characteristics were investigated in 2019-2020. Seedlings of the two Cola species were transplanted as a randomized complete block design with three replications on the field. Fertilizer treatments were imposed and the shoot and root growth parameters of the cola were monitored for two growing seasons. From the results, application of NPK fertilizer positively enhanced leaf and stem branch development as well as canopy features of the cola species compared to super-gro and the control treatments. Seedling height and leaf area development were higher significantly through application of super-gro over NPK and the control plots. Leaf production, stem branch number, stem girth development and leaf area development in *Cola nitida* were significantly higher than in *Cola acuminata*. *Cola acuminata*

Asian J. Soil Sci. Plant Nutri., vol. 9, no. 4, pp. 120-131, 2023

^{*}Corresponding author: Email: ibfamuwagun@futa.edu.ng, ibdfamuwagun@gmail.com;

seedlings height were significantly higher compare to Cola nitida during the two growing seasons. The interactions of fertilizers and crop species reveals that NPK and super–gro application significantly influenced leaf production in C acuminata over C nitida. Stem branch production in C acuminata was better significantly under the treatment of NPK than that of C nitida under super-gro and the control plots. Canopy development was significantly higher under Cola acuminata treated with Super-gro followed by NPK with the control having the least. Canopy development in Cola nitida were significantly lower compared with Cola acuminata across the fertilizer treatments.

Keywords: Cola; development; establishment; fertilizer; growth; variety.

1. INTRODUCTION

Colanut (Cola spp. L) is the fruit of the Cola trees that are from the tropical rainforests of Africa and a member of the family Malvaceae (formerly sterculiaceae). It is an important cash crop to a significant proportion of Nigerian population who are involved in Colanut farming, trading and industrial utilization. Almost 50 Cola species have been identified in West Africa, however, the Cola species of economic importance in Nigeria are Cola nitida and Cola acuminata [1]. Colanut has world production of 300.000 metric tonnes. however, Nigeria accounts for (88%) of the total world production of Colanuts [2,3]. It is cultivated to a large degree in Southern part of Nigeria, Ghana, Ivory Coast, Cameroon, Sierra Leone, Brazil and the West Indian Islands [4].

Colanut production in Nigeria is limited by a number of problems ranging from low yield, pest, diseases, low soil fertility and pronounced dormancy [5]. Other factors contributing to reduction in the cultivation of the crop is the stress involved in the establishment of the plantation through seeds, due to pronounced dormancy that persist up to 8-months thereby reducing the rate of germination, emergence and subsequent slow growth and development which makes plantation establishment cumbersome [6,7]. The available trees are of age, some are dying due to fire hazard coupled with increase human population which has led to reduction in number of Cola trees.

Despite the uses and economic importance of the crop, it has not received the needed attention in the area of plantation establishment among others as a result of over exploitation. Cola is extinction-threatened in several west and central African countries such as Ivory Coast, Togo, Congo and Sierra Leone [8]. Another factor threatening the survival of the Cola is its poor natural regeneration and slow growing seedlings [9,10].

Today, it is very difficult to find plantation of Colanut in Nigeria due to difficulties associated with its propagation, establishment, post-nursery performance and products marketability [10-13]; (Yakubu et al., 2014).

Application of soil amendments like NPK fertilizer and Super-gro have been researched to enhanced crop growth and establishment on the field for annual crops but much have not being done on their effects on plantation crops (Cola, and Cocoa) establishment Rubber and development. Super-gro is a 100% organic liquid fertilizer which is made from poultry droppings and sea bird guano, it is eco-friendly and made from organic matter with absolutely no chemicals added to it. While, NPK fertilizer is a synthetic compound fertilizer applied to the soil or to plant tissues to supply basic plants nutrients essential for the growth of plants.

The research work aimed at investigating the effects of fertilizers on field establishment, growth, development and canopy characteristics of two Cola species.

2. MATERIALS AND METHODS

The research was carried out at the Teaching and Research Farm of the Federal University of Technology, Akure (FUTA), FUTA is located on altitude of 332 m above sea level, 7 16'N, 512'E longitude and latitude in rainforest zone southwestern Nigeria. The experiments were conducted during the growing seasons of 2019 to 2021. Pods of two species of Cola were obtained from Cocoa Research Institute of Nigeria (CRIN) Oyo State, Nigeria. The seeds were raised through the nursery to seedlings using standard agronomic procedures for nursery production.

2.1 Effects of Fertilizers on Growth, Development and Field Establishment of Cola Species

The experiment was conducted between May 2019 to December 2021 to investigate the effects of NPK and super-gro on growth, development and establishment of Cola species on the field.

The sites were manually cleared and laid out at the Teaching and Research Farm of Federal University of Technology, Akure. The raised seedlings were transplanted at a spacing of 7m x 7m with six plant per sub plot and a total population of 108 Cola stands.

2.2 Experimental Design, Treatment and Planting

2 x 3 Factorial experiment replicated three times, laid out in a Randomized Complete Block Design (RCBD). Weeding and other agronomic practices were carried out as required. Manual watering was carried out to supplement soil moisture deficit during the dry season.

Treatments application: NPK fertilizer 15-15-15 and super-gro were applied at one and four months after transplanting at 4g/stand per application period for NPK and 1ml of super-gro to one litre of water/plant applied as both folia and fertigation.

Data were measured on a two weeks interval on Number of leaves, Plant height, Stem girth (cm), Number of branches and Leaf area developemt (cm²).

2.3 Data Analysis

Data collected were subjected to statistical analysis (ANOVA) using Minitab 17 and the means were separated using Tukeys test at 5% level of probability.

3. RESULTS

Effects of fertilizer treatments were examined on shoot and root development in the two cola species. From the results shown in Table 1, plant height was significantly higher in super-gro treated cola plots compared with NPK and control treated plots at 12 - 40 and 48 Weeks after Sowing (WAS). Super-gro treated plot had superior plant height development when compared to NPK and control treated plots.

Table 2 shows the effects of fertilizer on number of branches developed by the Cola species.

Application of NPK fertilizer significantly enhanced number of branches of young Cola plants on the field. There were significant

differences between NPK treated plots over super-gro and the control. At 12 - 20 WAS, there significant differences in were no the number of branches between NPK. super-gro and control plots. At 24 - 40 WAS and 72 WAS, similar number of branches were produced by NPK and super-gro treated plots and were significantly higher than the control plots. At 44 -68 WAS, significantly higher number of branches were produced by the NPK treated plots compared with super-gro and the control plots. More branches were produced by the NPK treated plots than the super-gro and control plot.

Table 3 shows the effects of fertilizers on stem girth development of two species of Cola. At 12 WAT (Weeks after Transplanting), seedlings grown on NPK treated and unfertilized plots produced similar stem girth which was significantly thicker in girth over recordings on plants grown on super-gro treated plots. At 16-44 WAT, 68 and 72 WAT, similar stem girth was produced by seedlings grown on NPK, super-gro as unfertilized control plots. At 48-52 WAT, 60-64 WAT, seedlings grown on plots treated with super-gro and unfertilized control had similar stem girth which was significantly thinner. At 56 and 68 WAT significantly thicker stem girth was observed on seedlings raised in super-gro and NPK treated plots. Table 5 shows the effects of NPK fertilizer and super-gro on leaf area of two Cola species.

At 12-72 WAT, significantly wider leaf area was produced by seedlings grown on super-gro treated plots with exception of 12 WAT, 44-48 WAT and 56 WAT, seedling grown on NPK treated and the unfertilized plots produced similar leaf area. Wider leaf was observed with the seedlings grown on super-gro treated plots while seedlings grown on NPK treated and control plots produced similar leaf area.

Table 6 shows the effects of species on the number of leaves produced on the field.

From the Table 6, there were significant differences between *C. nitida* and *C. acuminata* in term of number of leaves produced. *C. nitida* produced significantly higher number of leaves throughout the periods of sampling except at 16 WAT when the number of leaves produced by *C. nitida* was the same with *C. acuminata*.

Table 1. Effects of NPK fertilizer and super-gro application on Cola species on number of leaves of two species of Cola

Fertilizer							We	eks after t	ransplan	ting						
	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
Super-gro	12.5a	15.00a	17.25a	18.00b	20.00b	26.88b	28.13b	28.13b	25.38c	28.75c	36.50c	34.38c	32.04c	30.02c	28.01c	27.04c
NPK	10.88a	14.63a	19.87a	27.50a	30.50a	49.13a	53.38a	59.88a	61.50a	62.00a	64.3a	65.50a	63.02a	61.01a	58.03a	56.02a
Control	7.88b	12.00b	17.13a	18.13b	26.38b	26.13b	32.13b	31.75b	33.63b	41.50b	47.00b	48.75b	44.25b	41.20b	39.02b	37.01b

Means in same column followed by same letter (s) are not significantly different @ $p \le 0.05$.

Table 2. Effects of NPK fertilizer and super-gro application on Cola species on plant height (cm) of two species of Cola

						Weeks	after trai	nsplanting	g (WAT)						
12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
20.63a	28.91a	33.88a	39.25a	45.75a	50.13a	54.63a	62.38a	68.63a	73.75a	77.63a	83.38a	85.00a	88.04a	90.12a	94.04a
10.38b	26.43a	32.46a	35.54a	41.33a	48.25a	54.50a	57.50b	63.75a	69.38b	75.88a	81.88a	82.30a	85.01a	88.05a	90.22a
8.00b	21.63b	23.29b	25.19b	27.50b	37.63b	37.63b	42.25c	50.25b	53.00c	55.63b	60.63b	61.80b	63.00b	65.08b	67.00b
	10.38b	10.38b 26.43a	20.63a 28.91a 33.88a 10.38b 26.43a 32.46a	20.63a 28.91a 33.88a 39.25a 10.38b 26.43a 32.46a 35.54a	20.63a 28.91a 33.88a 39.25a 45.75a 10.38b 26.43a 32.46a 35.54a 41.33a	20.63a28.91a33.88a39.25a45.75a50.13a10.38b26.43a32.46a35.54a41.33a48.25a	1216202428323620.63a28.91a33.88a39.25a45.75a50.13a54.63a10.38b26.43a32.46a35.54a41.33a48.25a54.50a	121620242832364020.63a28.91a33.88a39.25a45.75a50.13a54.63a62.38a10.38b26.43a32.46a35.54a41.33a48.25a54.50a57.50b	12162024283236404420.63a28.91a33.88a39.25a45.75a50.13a54.63a62.38a68.63a10.38b26.43a32.46a35.54a41.33a48.25a54.50a57.50b63.75a	20.63a 28.91a 33.88a 39.25a 45.75a 50.13a 54.63a 62.38a 68.63a 73.75a 10.38b 26.43a 32.46a 35.54a 41.33a 48.25a 54.50a 57.50b 63.75a 69.38b	12 16 20 24 28 32 36 40 44 48 52 20.63a 28.91a 33.88a 39.25a 45.75a 50.13a 54.63a 62.38a 68.63a 73.75a 77.63a 10.38b 26.43a 32.46a 35.54a 41.33a 48.25a 54.50a 57.50b 63.75a 69.38b 75.88a	12 16 20 24 28 32 36 40 44 48 52 56 20.63a 28.91a 33.88a 39.25a 45.75a 50.13a 54.63a 62.38a 68.63a 73.75a 77.63a 83.38a 10.38b 26.43a 32.46a 35.54a 41.33a 48.25a 54.50a 57.50b 63.75a 69.38b 75.88a 81.88a	12 16 20 24 28 32 36 40 44 48 52 56 60 20.63a 28.91a 33.88a 39.25a 45.75a 50.13a 54.63a 62.38a 68.63a 73.75a 77.63a 83.38a 85.00a 10.38b 26.43a 32.46a 35.54a 41.33a 48.25a 54.50a 57.50b 63.75a 69.38b 75.88a 81.88a 82.30a	121620242832364044485256606420.63a28.91a33.88a39.25a45.75a50.13a54.63a62.38a68.63a73.75a77.63a83.38a85.00a88.04a10.38b26.43a32.46a35.54a41.33a48.25a54.50a57.50b63.75a69.38b75.88a81.88a82.30a85.01a	12162024283236404448525660646820.63a28.91a33.88a39.25a45.75a50.13a54.63a62.38a68.63a73.75a77.63a83.38a85.00a88.04a90.12a10.38b26.43a32.46a35.54a41.33a48.25a54.50a57.50b63.75a69.38b75.88a81.88a82.30a85.01a88.05a

Means in same column followed by same letter (s) are not significantly different @ $p \le 0.05$.

Table 3. Effects of NPK fertilizer and super-gro application on the number of branches of two species of Cola

Fertilizer								Weeks afte	er sowing							
	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
Super-gro	1.88a	2.25a	2.50a	2.50a	2.50ab	3.00ab	3.50a	3.50ab	3.75b	4.00b	4.13b	4.58b	4.88b	5.20b	5.35b	5.48a
NPK	1.88a	1.88a	2.38a	2.75a	3.13a	3.88a	4.50a	5.00a	6.25a	6.38a	6.75a	8.18a	8.38a	8.58a	8.67a	8.72a
Control	1.00a	1.38a	1.38a	1.75b	1.75b	1.75b	1.88b	2.00b	2.25b	2.88b	3.38b	4.00b	4.38c	4.58c	5.00b	5.10b

Means in same column followed by same letter (s) are not significantly different @ $p \le 0.05$

Table 4. Effects of NPK fertilizer and super-gro application on Cola spp. on stem girth of two species of Cola

Fertilizer							We	eks after	[.] transpla	nting						
	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
Super-gro	1.38b	1.76a	2.14a	2.44a	2.54a	2.81a	2.96a	3.18a	3.34a	3.53b	3.80b	4.12a	4.54b	4.60b	4.70a	4.90a
NPK	1.65a	2.03a	2.33a	2.53a	2.71a	3.04a	3.20a	3.48a	3.69a	4.15a	4.33a	4.78a	4.90a	5.10a	5.20a	5.35a
Control	1.66a	1.95a	2.28a	2.29a	2.61a	2.98a	3.06a	3.24a	3.55a	3.53b	3.79b	3.89b	4.10b	4.30b	4.50b	4.60a

Table 5. Effects of NPK fertilizer and super-gro application on leaf area (cm) of two species of Cola

Fertilizer							Weeks	after tra	nsplantin	ig (WAT)						
	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
Super-gro	137a	213a	220a	220a	230a	234a	235a	240a	248a	250a	253a	260a	234a	220a	214a	211a
NPK	79.45b	136b	140b	142b	145b	148b	155b	165b	185b	210b	217b	235b	220b	215b	210b	205b
Control	52.24c	130b	140b	142b	145b	148b	155b	165b	171c	190c	210b	217c	213b	210b	206b	204b

Means in same column followed by same letter (s) are not significantly different @ p ≤0.05

Table 6. Effects of Colanut species on number of leaves

Species							Weeks	after trans	splanting						
	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
C. nitida	14.50a	29.60a	32.40a	39.80a	41.40a	42.40a	50.60a	54.20a	63.10a	65.00a	67.00a	70.10a	75.10a	69.00a	66.00a
C. acuminata	18.60a	19.50b	22.40b	26.50b	26.90b	28.10b	28.01b	30.10b	32.40b	36.00b	36.50b	37.10b	39.20b	36.80b	34.40b

Means in same column followed by same letter (s) are not significantly different @ $p \le 0.05$

Table 7. Effects of Cola species on plant height development (cm)

Species						V	Veeks afte	r transpla	nting (WA	NT)					
	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
C. nitida	10.80a	14.20a	14.40a	16.80a	16.90a	20.20b	27.50b	32.00b	33.50b	44.20b	49.50b	52.60b	56.20b	58.00b	60.10b
C. acuminata	15.50a	17.50a	19.20a	24.30a	29.10a	33.40a	39.10a	40.20a	48.60a	56.80a	63.20a	69.60a	71.30a	73.50a	75.00a

Means in same column followed by same letter (s) are not significantly different @ p≤0.05

Table 8. Effects of Cola species on number of branches

Species							Weeks	after tran	splanting						
	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
C. nitida	1.60a	1.80a	2.20a	2.40a	2.60a	3.40a	3.90a	4.30a	5.40a	6.10a	6.50a	7.20a	8.10a	8.50a	9.00a
C. acuminata	1.20a	1.60b	1.60b	1.70b	1.90b	2.30b	2.40b	2.60b	3.00b	3.20b	3.20b	3.50b	3.70b	4.00b	4.40b

Table 9. Effects of species on stem girth of Cola nitida and Cola acuminata on the field

Species						V	Veeks afte	er transpla	anting (W	AT)					
	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
C. nitida	1.60a	1.65a	1.66a	1.69a	1.80a	2.00a	2.10a	2.30a	2.30a	2.70a	3.40a	4.20a	4.35a	4.70a	5.00a
C. acuminata	1.45a	1.60a	1.60a	1.65a	1.70a	1.89a	1.90a	2.10a	2.20a	2.40a	2.90a	3.00b	3.20b	3.40b	3.70b

Means in same column followed by same letter (s) are not significantly different @ $p \le 0.05$.

Table 10. Effects of Colanut species on leaf area of Cola nitida and Cola acuminata on the field

Species							Weeks afte	er transpla	nting (WA	T)					
	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
C. nitida	119.80a	130.60a	136.40a	139.10a	152.00a	160.10a	164.20a	167.20a	168.00a	171.40a	173.20a	161.00a	159.20a	155.00a	179.00a
C.acuminata	111.90b	124.10b	128.60b	137.20b	143.50b	149.20b	152.40b	154.70b	156.00b	162.70b	166.50b	157.10b	152.20b	150.60b	167.00b
				Means in s	same colum	n followed b	y same lette	er (s) are not	significantly	different @	p ≤0.05.				

Table 11. Combine Effects of Cola species and fertilizers on leaf production on the field

Species	Fertilizer							Weeks	s after tra	Insplanti	ng (WAT)					
		12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
C. acuminata	Super gro NPK Control	10.25b 14.75a 7.75c	11.75b 18.50a 9.50b	12.50c 23.75a 13.75c	12.50c 32.50a 14.00c	15.25d 41.00a 22.75b	70.75a			17.00d 77.50a 21.25d	18.75d 82.25a 19.00d	33.00c 127.25a 27.00d	11.25d 58.75a 36.25c		18.20e 75.60a 45.10d	22.40d 78.90a 48.20c	24.20d 80.02a 50.00c
C. nitida	Super gro NPK Control	12.75a 7.00b 8.00b	18.25a 10.75b 9.50b	22.00a 16.00b 20.50a	23.50b 23.50b 22.25b	20.00c			37.75c 34.75c 46.75b		38.75c 38.75c 64.00b	40.00c 77.25b 67.00b	57.50a 52.25b 35.25c	58.10b 56.10b 40.20c	62.10b 48.40c 45.80d	64.10b 60.00b 48.00c	66.10b 62.20b 50.00c

Famuwagun et al.; Asian J. Soil Sci. Plant Nutri., vol. 9, no. 4, pp. 120-131, 2023; Article no.AJSSPN.104946

Species	Fertilizer							Weeks	after trai	nsplantin	g (WAT)						
		12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
C. acuminata	Super gro NPK Control	28.50a 17.00b 7.75d	28.50a 28.98b 24.75c	42.75a 35.80b 25.83c	48.25a 37.08b 28.75c	56.00a 43.00b 31.75c	58.50a 51.50b 46.75c	65.00a 60.75a 40.00c	69.25a 61.50b 47.25c	76.75a 64.75b 55.25c	80.00a 69.00b 60.00c	87.25a 70.25b 61.50c	91.00a 80.50b 71.25c	94.60a 83.50b 74.20c	96.00a 85.02b 76.00c	97.08a 87.05b 78.03c	99.00a 88.09b 81.08b
C. nitida	Super gro NPK Control	12.75c 3.75e 8.25d	23.25c 23.93c 18.50d	25.00c 29.13c 20.75c		33.50c 39.65b 23.65d	41.75c 45.00c 28.50d	44.25b 48.25b 34.25d	55.50b 53.50b 37.25d	60.50b 62.75b 45.25d	67.50b 69.75b 45.50d	68.00b 81.50a 49.75d	75.75c 83.25b 50.00d	77.13c 85.55a 52.10d	79.20c 87.23b 54.00d	82.00b 90.04a 57.03d	85.04b 92.08a 59.04c

Table 12. Combine effects of species and fertilizers on plant height

Means in same column followed by same letter (s) are not significantly different @ $p \le 0.05$.

Table 13. Combined effects of Cola species and fertilizers on number of branches produced

Species	Fertilizer	Weeks after transplanting (WAT)															
		12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
C. acuminata	Super gro	2.25a	2.50a	2.50a	2.50b	2.50b	2.75c	2.75c	2.75d	3.00d	3.00d	3.00d	3.25d	3.75d	3.95d	4.02e	4.25e
	NPK	2.75a	2.75a	3.00a	3.75a	3.75a	5.00a	6.00a	6.50a	7.00a	7.00a	7.25a	7.75a	8.00a	8.05a	8.25a	8.50a
	Control	1.00b	1.75c	1.75c	2.50b	2.50b	2.50c	2.50c	2.75d	3.25d	3.25d	4.00d	4.00d	4.25d	4.50d	5.00d	5.25d
C. nitida	Super gro	1.50b	2.00a	2.50b	2.50b	2.50b	3.25b	4.25b	4.25b	4.50c	5.00b	5.25c	5.25c	5.75c	6.00c	6.25c	6.50c
	NPK	1.00d	1.00d	1.75c	1.75c	2.50b	2.75c	3.00c	3.50c	5.50b	5.75b	6.25b	6.25b	6.80b	7.00b	7.25b	7.50b
	Control	1.00d	1.00d	1.00d	1.00d	1.00d	1.00d	1.25d	1.25d	1.50e	2.50e	2.75e	2.75e	2.85e	3.00e	3.25f	3.50f

Species	Fertilizer	Weeks after transplanting (WAT)															
		12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
	Super gro	1.18c	1.58b	2.15b	2.54b	2.54b	2.65d	2.70b	2.85b	2.85b	2.95d	3.18c	3.20c	3.35c	3.50c	4.10b	4.25b
g	NPK	1.60a	2.10a	2.45a	2.61a	2.67a	3.08a	3.18a	3.36a	3.58a	3.97b	4.05b	4.39b	4.46b	4.50b	5.10a	5.25a
C. acuminata	Control	1.70a	2.03a	2.43a	2.65a	2.93a	3.23a	3.40a	3.58a	3.63a	3.98b	4.33a	3.25c	3.45c	3.50c	3.58c	4.10b
	Super gro	1.58b	1.95a	2.13b	2.43a	2.55b	2.98b	3.23a	3.50a	3.83a	4.10a	4.43a	5.03a	5.09a	5.16a	5.20a	5.30a
	NPK	1.73a	1.98a	2.23b	2.43a	2.75a	2.95b	3.18a	3.50a	3.70a	4.25a	4.50a	5.05a	5.15a	5.25a	5.45a	5.55a
C. nitida	Control	1.63a	1.88a	2.13b	1.93c	2.30c	2.73c	2.73c	2.90a	3.08a	3.08b	3.25c	3.43c	3.50c	3.55c	3.63c	3.70c

Table 14. Combined effects of Cola species and fertilizers on stem girth (cm) produced

Means in same column followed by same letter (s) are not significantly different @ $p \le 0.05$.

Table 15. Combined effects of species and fertilizers on leaf area (cm) development on the field

Species	Fertilizer	r Weeks after transplanting (WAT)															
		12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
ninata	Super gro	48.90e	177.80c	210.85b	207.1b	217.10b	224.80b	233.70c	237.23c	247.88b	248.08b	232.18c	228.93c	226.09c	220.01c	217.02c	214.02c
	NPK	188.60a	324.75a	222.75b	226.00a	206.25b	181.65d	280.75a	236.70b	190.55c	249.50b	240.25b	108.25d	106.01d	102.05d	100.01d	97.03d
acun	Control	38.05f	132.03d	122.50d	79.50e	91.00d	58.54f	71.00e	152.85c	124.76e	134.65c	134.65d	103.75e	101.67d	99.02e	97.01d	95.03d
C)																	
C. nitida	Super gro	85.45c	241.25b	246.50a	217.00a	206.25b	260.98a	298.25a	230.60b	245.65b	246.10b	240.25b	287.25b	275.02b	272.01b	268.00b	250.00b
	NPK Control	120.85b 55.58d	252.43b 94.20d	147.25c 106.00e		195.50c 94.58d	215.86c 88.97e	258.50b 107.25d		337.75a 155.58d				350.00a 69.00f	345.08a 66.01f		332.00a 62.01e

Table 7 shows the effects of species on plant height on the field.

There was significant difference between *C. acuminata* and *C. nitida* in terms of plant height. *C. acuminata* produced significantly higher plant height compared with *C. nitida* throughout the period of the experiment excepting at 16-32 WAT where plant height of *C. acuminata* was the same with *Cola nitida*.

Table 8 shows the effects of species on the number of branches produced on the field.

From the result, there were significant difference between *C. nitida* and *C. acuminata* in terms of number of branches produced. However, the pattern of growth in the production of leaves as influenced by the two Cola species was reflected in the production of number of branches. More branches were produced by *C. nitida*.

Table 9 shows the effects of species on stem girth of *Cola nitida* and *Cola acuminata* on the field.

From the result, there were significant difference between *C. nitida* and *C. acuminata* in terms of stem girth development on the field. *C. nitida* produced similar stem girth with *C. acuminata*.

At 16-56 WAT, significantly thicker stem girth was produced by *C. nitida*.

Table 10 shows the effects of species on leaf area development of *Cola nitida* and *Cola acuminata*

There was significant difference between *C. nitida* and *C. acuminata* in terms of leaf area developments on the field. *C. nitida* produced significantly wider leaf area on the field compared with *C. acuminata* throughout the period of the experiment excepting at 16 and 28 WAT when the two species produced similar leaf area. *C. nitida* produced more branches, leaves and ultimately wider leaf area.

Table 11 shows the combined effects of species and fertilizers on number of leaves produced

From the results, combination of NPK fertilizer significantly influenced leaf production of *Cola acuminata* compare to other combination of fertilizers and species. At 12, 16 and 20 weeks after transplanting, no significant difference between combination of NPK and *C. acuminata*

compared with super-gro and *C. nitida*. Beginning from week 24 to 72, NPK was significantly higher in both *C. acuminata* and *C. nitida* compare with super-gro and control. In *C. nitida* super-gro was relatively higher than NPK fertilizer. Significantly higher number of leaves was produced by *C. acuminata* grown on NPK treated plots in all sampling periods excepting at 12WAT where the number of leaves produced by *C. acuminata* on NPK plots was similar with super-gro treated plots.

C. acuminata grown on plots treated with supergro produced more leaves which was only significant at 12, 16 and 20WAT, similar number of leaves was produced by *C. acuminata* on super-gro and NPK treated plots.

Table 12 shows the combined effects of species and fertilizers on plant height.

From the results super-aro significantly influenced plant heights development of Cola acuminata compared to other treatment combinations. In Cola nitida, NPK fertilizer significantly influenced plant heights compare to other treatment combinations. From 12 weeks transplanting, there were significant after differences between combination of super-gro and C. acuminata compared with NPK and Cola nitida. Interaction between super-gro and Cola acuminata was significantly higher compared with super-gro and Cola nitida. Hence, super-gro applied to the plants influenced the plant height development on the field.

Table 13 shows the combine effects of species and fertilizers on number of branches.

From the results, NPK fertilizers significantly influenced branch production in *Cola acuminata* compared to other combinations. No significant differences between combination of NPK and *C. acuminata* compared with super-gro and *C. nitida* species at 12, 16, 20 weeks after transplanting. At 44 weeks after transplanting NPK performed higher than super-gro and the control in term of stem branch development.

Table 14 shows the combine effects of species and fertilizers on stem girth produced.

From the results, combinations of NPK fertilizers with *Cola acuminata* significantly influenced the stem girth development compared with the combination NPK and *C. nitida* and Super-gro and *C. nitida*.

Table 15 shows combined effects of Cola species and fertilizers on leaf area development on the field. From the results, NPK fertilizers significantly influenced the leaf area production of *Cola acuminata* and Cola nitida over Supergro on the two species. Likewise, in *Cola nitida* NPK fertilizer produced more leaf area between week 12, to 72 after sowing compared to supergro and control.

4. DISCUSSION

Optimum crop performance is greatly determined by availability of essential nutrients at the right rate, right time and right proportion according to Agele et al., 2011. The results of the experiments highlighted the superiority of fertilized plants over non-fertilized in term of growth and development in two Cola species. The consistent poor performance of non-fertilized plant shows that when nutrients are inadequate, Cola plant do not grow well and develop properly. Application of fertilizers (Super-gro and NPK) had positive influence on the growth, development and field establishment of the two Cola species as evident in the results.

4.1 Effects of Cola Species and Fertilizers on Growth and Development and Field Establishment of Colanut

Effects of fertilizers application on the two Colanut species significantly increased the number of leaves produced. This was attributed to the availability of essential nutrients for shoot growth and development during active growth stage of the plant. The findings was in tandem with that of Famuwagun and Oladitan, [14] that application of NPK fertilizer led to increased leaf production in cocoa seedlings. The number of leaves in Cola acuminata were significantly higher than that of Cola nitida. Super-gro and NPK fertilizer produced more number of leaves in C. acuminata compared to C. nitida. The positive influence of super-gro on vegetative development in arable and perennial crops was reported by Alaneme and Howells, [15] that application of super-gro aided increased leaf production on field grown fluted pumpkin. Also, Ayeni, [16] reported the use of both organic and inorganic fertilizer for enhanced growth and development of crops.

4.2 Effect of Species and Fertilizers on Plant Height

Transplanted seedlings of *C. acuminata* showed better response to fertilizers than seedlings of

Cola nitida in the plant height development, leaf production rate and leaf area development. These findings may be due to genetic traits as reported by Opeke, that trees of *C. acuminata* are taller and bigger than C nitida that are of the same age and in same location. C *acuminata* seedlings were taller compared to that of *C. nitida* under NPK and Super-gro treatment over the control. Agele et al. [17] observed similar increase in growth parameters in tomato and pepper under NPK fertilizer application.

The highest number of branches were obtained from C. acuminata treated with NPK fertilizer followed Super-gro application. bv Cola acuminata produced more number of branches compared to C. nitida. These may be traced to availability of nutrient in the soil for assimilate production towards growth and development as well as the genetic makeup of the variety that usually produced more stem branch. This was supported by Babalola et al., [18] and Opeke, [19] that C acuminata are more vigorous than C. nitida [20].

The leaf area of *Cola nitida* was relatively higher than those obtained in *Cola acuminata* during the two seasons of the experiment. NPK fertilizer had a significantly higher impact on the leaf area development than Super-Gro in *Cola nitida*. The increased leaf area development of the two Cola species with NPK and super-gro application implied timely and sufficient supply of required nutients which in turn enhanced photosynthetic activities for growth and development. These findings was in tandem with that of Famuwagun and Oladitan [14] that application of NPK fertilizer enhanced leaf area development in cacao.

Application of NPK fertilizer and super-gro aid quick establishment of Cola. It increases the soil nutrient that brought about rapid growth and development of Cola species.

The super-gro provide enabling environment for leaf formation and development which increase the photosynthetic activity of the leaves that enhances the rapid growth of the Cola.

5. CONCLUSION

Based on the findings of the research, it was concluded that fertilizer application in cola spp plantation establishment is a major booster of vegetative growth and development.

It was also concluded that the use of supper-gro and NPK 15-15-15 fertilizer enhances quick plantation establishment in cola.

6. RECOMMENDATION

Based on the result of this study, the following were recommended;

Application of NPK fertilizer and Super-gro is recommended for quick field establishment.

ACKNOWLEDGEMENTS

The contribution of the Department of Crop soil and Pest Management, Federal University of Technology Akure is immensely acknowledged for given out a portion of land for the establishment of the experiment trials. Also the contribution of Mr Ogundijo and Mr Owoputi (Field assistants) who participated in field establishment and maintenance of the research work.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Atanda OO, Olutayo A, Mokwunye FC, Oyebanji AO, Adegunwa MO. The quality of Nigerian Colanuts. African Journal of Food Science. 2011;5(17):904-909. Available:http://www.academicjournals.org/ ajfs
- 2. Quarcoo T. A handbook on cola. Cocoa Research Institute of Nigeria (CRIN) Ibadan; 1973.
- 3. Oladokun MAO. Objectives and achievements in cola propagation. presented Research paper at а symposium to mark the 21st Anniversary of the Establishment of CRIN; 2000.
- 4. FAOSTAT. Cola production statistics. Food and Agriculture Organization of the United Nations; 2015. Available:www.fao.org
- Hammed LA, Olaniyan AB, Olaiya AO, Bodunde JG. Germination and growth performance of Cola (*Cola nitida*) seeds in the nursery as influenced by cotyledon reduction. Seed Science Technology. 2013;41:292-297.
- Famade AO. A handbook on Cola production; Cocoa Research Institute of Nigeria. CRIN, Ibadan, Nigeria. 2012;13-15.
- 7. Hammed LA, Adebayo SM, Bodunde JG, Olaiya AO, Olaniyan AB, Olosunde OM.

Mini – Nut Propagation Technique of Cola (*Cola nitida*. (Vent.) Schott and Endl.) Prospects for Germination and Propagation of Cola plantlets in the Prenursery. International Journal of Fruits Science; 2018.

- 8. Eyog-Matig O, Aoudji AKN, Linsoussi C. Garcinia cola heckel seeds dormancybreaking. Applied Ecology and Environmental Research. 2007;5:63-71.
- 9. Abbiw DK. Useful plant of Ghana. Intermediate technology publications and royal botanic gardens, kew, london. 1990;225-226.
- Kanmegne G, Ndoumou OD. Effects of hormones application on the germination of six populations of *Garcinia Cola* Heckel (Guttiferae) seeds. International Journal of Biological and Chemical Sciences. ISSN 1991-8631. 2007;1(3):255-261.
- Kanmegne G, Ndoumou OD. Effects of hormones application on the germination of six populations of *Garcinia Cola* Heckel (Guttiferae) seeds. International Journal of Biological and Chemical Sciences. ISSN 1991-8631. 2007;1(3):255-261.
- 12. Oboho EG, Ogana FN. Effects of varying water soaking duration on the germination of *Garcinia Cola* (Heckel) seeds. Nigerian Journal of Agriculture, Food and Environment. 2011;7(2):57-62.
- 13. Oboho EG, Urughu JA. Effects of pregermination treatments on the germination and early growth of *Garcinia Cola* (Heckel). African Journal of General Agriculture. 2010;6(4):233-240
- 14. Famuwagun Idowu Babadele, Oladita O. Influence of varying rates of fertilizers on the performance of cacao (*Theobroma cacao*) seedlings in the nursery. Book Chapter on Just Enough Nitrogen: Perspectives on how to get there for regions with too much and too little nitrogen. Springer Publication; 2020.
- Alaneme azawei, Howells PA. Evaluation of sustainable bio-liquid fertilizer (Super Gro) on the production of Fluted Pumpkin (*Telfairia occidentalis*). European Journals of Food Science and Technology. 2022;10(1):20-42.
- Ayeni LS. Integration of cocoa pod ash, poultry manure and NPK 20:10:10 fertilizer for soil fertility management-Incubation study. Continental Journal of Agronomy. 2008;2:25-30.
- 17. Agele SO, Adeyemo JA, Famuwagun IB. Effects of agricultural wastes and mineral

Famuwagun et al.; Asian J. Soil Sci. Plant Nutri., vol. 9, no. 4, pp. 120-131, 2023; Article no.AJSSPN.104946

fertilizer on soil and plant nutrient status, growth and yield of tomato. Achieves of Agronomy and Soil Sciences. 2011; 57(1):91-101.

 Babatola LA, Adebayo OB, Lawal OL. Effects of different rates of poultry manure and NPK on performance of *Celosia argentia*. Proceeding of Horticultural Society of Nigeria, Ibadan 2002;14-17:54-56.

- 19. Opeke LK. Tropical tree crops, Spectrum Books Limited, Ibadan Nigeria. 2005; 327.
- 20. Oladokun MAO. Cola: The tree of life. An inaugural lecture presented at university of agriculture. Abeokuta; 2000.

© 2023 Famuwagun et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/104946