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Abstract 

 
In this paper, we proved a few fuzzy fixed point theorems in whole regular cone metric spaces, which can be 

the generalization of a few current consequences within side the literature. 
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1 Introduction  

 
Many researchers make the research under the fixed point theorems [1-3]. There exist some of generalizations of 

metric spaces, and one in all them is the cone metric spaces [4]. The notation of cone metric space is initiated 

via way of means of Huang and Zhang [5] and additionally they mentioned a few homes of the convergence of 
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sequences and proved the fuzzy fixed point theorems of a contraction mappings cone metric spaces [6]. Many 

authors have studied the life and forte of strict fuzzy constant factors for single valued mappings and multi 

valued mappings in metric spaces [7-10]. In this paper speak life and precise fixed point factor in entire ordinary 

cone metric spaces, which might be the generalization of a few current contraction principle. 

 

Definition  1.1: 

 

A subset 𝑆 of 𝐸 is called a cone if and only if : 
 

1. 𝑆 is closed, nonempty and 𝑆 ≠ 0 

2. 𝑎𝑥 + 𝑏𝑦 ∈ 𝑆 for all 𝑥, 𝑦 ∈ 𝑆 and nonnegative real numbers a, b 

3. 𝑆 ∩ 𝑆− = {0}. 
 

Given a cone 𝑆 ⊂ 𝐸, we define a partial ordering  ≤  with respect to  S  by 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. We 

will write  𝑥 < 𝑦  that  𝑥 ≤ 𝑦   but 𝑥 ≠ 𝑦, while 𝑥, 𝑦  will stand for  𝑦 − 𝑥 ∈ 𝑖𝑛𝑡 𝑆 , where 𝑖𝑛𝑡 𝑆 denotes the 

interior of  S.  The cone P is called normal if there is a number 𝐿 > 0 such that 0 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝐿‖𝑦‖ 

for all 𝑥, 𝑦 ∈ 𝐸. The least positive number satisfying the above is called the normal constant. The cone 𝐿 is 

called regular if every increasing sequence which is bounded from above is convergent. That is, if {𝑥𝑛} is 

sequence such that  𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 … ≤ 𝑦  for some  𝑦 ∈ 𝐸 , then there is 𝑥 ∈ 𝐸  such that                                

‖𝑥𝑛 − 𝑥‖ → 0 𝑎𝑠 𝑛 → 0.  

  

Equivalently the cone 𝑆 is regular if and only if every decreasing sequence which is bounded from below is 

convergent. It is well known that a regular cone is a normal cone. Suppose E is a Banach space, 𝑆 is a cone in E 

with 𝑖𝑛𝑡 𝑆 ≠ 0 𝑎𝑛𝑑 ≤ is partial ordering with respect to 𝑆.  

 

 Example 1.1: 

 

Let 𝐿 > 1 be given. Consider the real vector space with 

 

𝐸 = {𝑎𝑥 + 𝑏: 𝑎, 𝑏 𝜖ℝ; 𝑥 ∈ [1 −
1

𝑘
, 1]}  

 

With supremum norm and the cone      𝑆 = {𝑎𝑥 + 𝑏: 𝑎 ≥ 0, 𝑏 ≥ 0} in E. the cone S is ordinary and so normal.  

 

Definition 1.2: 

 

Suppose  that 𝐸 is real Banach space, then 𝑆 is a cone in E with 𝑖𝑛𝑡 𝑆 ≠ ∅, and ≤ is partial ordering with respect 

to 𝑆. Let 𝕏 be a nonempty set, a function 𝑑: 𝕏 × 𝕏 → 𝐸 is called a fuzzy cone metric on 𝕏 if it satisfies the 

following conditions with 

 

1. 𝑑(𝑥, 𝑦) ≥ 0, and 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 ∀𝑥, 𝑦 ∈ 𝑋,  
2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), ∀ 𝑥, 𝑦 ∈ 𝑋,  

3. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), ∀ 𝑥, 𝑦 ∈ 𝑋,  
 

Then (𝕏, 𝑑) is called a cone metric space (ℂ𝐹𝕄). 

 

Definition 1.3: 

 

A fuzzy cone metric space is a 3-tuple (𝕏,ℂ𝐹𝕄,∗)  such that 𝑆  is a cone of E, 𝕏  is nonempty set, ∗ is a 

continuous t-norm and M is a fuzzy set on 𝕏 × 𝕏 × 𝑖𝑛𝑡(𝑆) satisfying the following conditions, for all  𝑥, 𝑦, 𝑧 ∈
𝑋 and 𝑡, 𝑠 ∈ 𝑖𝑛𝑡(𝑃) (that is 𝑡 ≫ Θ, 𝑠 ≫ Θ) . 

 

1. ℂ𝐹𝕄(𝑥, 𝑦, 𝑡) > 0, 
2. ℂ𝐹𝕄(𝑥, 𝑦, 𝑡) = 1 if and only if 𝑥 = 𝑦,  
3. ℂ𝐹𝕄(𝑥, 𝑦, 𝑡) = ℂ𝐹𝕄(𝑦, 𝑥, 𝑡), 
4. ℂ𝐹𝕄(𝑥, 𝑦, 𝑡) ∗ ℂ𝐹𝕄(𝑦, 𝑧, 𝑠) ≤ ℂ𝐹𝕄(𝑥, 𝑧, 𝑡 + 𝑠),  
5. ℂ𝐹𝕄(𝑥, 𝑦, . ): 𝑖𝑛𝑡(𝑃) → [0,1] is continuous.  
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If (𝕏,ℂ𝐹𝕄,∗) is a fuzzy cone metric space, we will say that M is a fuzzy cone metric on 𝕏. 

 

Definition 1.4: 

 

Let(𝕏,ℂ𝐹𝕄,∗) be a fuzzy cone metric space, 𝑥 ∈ 𝕏 and {𝑥𝑛} be a sequence in 𝕏. Then {𝑥𝔫} is said to converge 

to 𝑥 if for any 𝑡 ≫ Θ and any 𝔯 ∈  (0, 1) there exists a natural number 𝔫0 such that     ℳ (𝑥𝔫;  𝑥;  𝑡)  >  1 −  𝑟 

for all 𝔫 ≥  𝔫0. We denote this by  

 

lim 𝔫−→ ∞ 𝑥𝔫  =  𝑥 or 𝑥𝔫 −→  𝑥 as 𝔫 →  ∞. 

 

Let (𝕏,ℂ𝐹𝕄,∗) be a fuzzy cone metric space, 𝑥 ∈ 𝕏 and {𝑥𝔫} be a sequence in 𝕏. {𝑥𝔫} converges to x if and 

only if ℳ (𝑥𝔫;  𝑥;  𝑡)−→  1 𝑎𝑠  𝔫 −→  ∞, for each 𝔱 ≫ Θ. 
 

Let (𝕏,ℂ𝐹𝕄,∗) be a fuzzy cone metric space and {𝑥𝔫} be a sequence in 𝕏. 

 

Then {𝑥𝔫} is  said to be a Cauchy sequence if for any 0 <  𝜀 <  1 and any 𝔱 ≫ Θ.  
 

There exists a natural number 𝔫0 such that  ℳ (𝑥𝔫;  𝑥𝔪;  𝑡) >  1 − 𝜀 for all 𝔫, 𝔪 ≥ 𝔫0. 

 

2 Main Result 

 

Theorem 2.1: 

  

Let (𝕏,ℂ𝐹𝕄,∗) be a complete fuzzy cone metric space and 𝑆 be a normal cone with normal constant L. suppose 

the mapping 𝑇: 𝕏 × 𝕏 × (0,∞) → [0,∞) satisfies the following conditions: 

 

ℂ𝐹𝕄(𝑇𝑥, 𝑇𝑦 , 𝑡) ≤ (
ℂ𝐹𝕄(𝑥,𝑇𝑥,𝑡)+ℂ𝐹𝕄(𝑦,𝑇𝑦,𝑡)

ℂ𝐹𝕄(𝑥,𝑇𝑥,𝑡)+ℂ𝐹𝕄(𝑦,𝑇𝑦,𝑡)+𝑙
)ℂ𝐹𝕄(𝑥, 𝑦, 𝑡)                                                                    (1) 

 

For all  𝑥, 𝑦 ∈ 𝕏, 𝑤ℎ𝑒𝑟𝑒 𝑙 ≥ 1 & 𝑡 ∈ 𝕏. 𝑡ℎ𝑒𝑛 

 

i. T has fuzzy unique fixed point in 𝕏.  

ii. 𝑇𝑛𝑥 ′ converges to a fuzzy fixed point, for all 𝑥 ′ ∈ 𝕏. 

 

Proof : 

 

i. Let 𝑥0 ∈ 𝕏 be arbitrary and choose a sequence {𝑥𝑛} such that 𝑥𝑛+1 = 𝑇𝑥𝑛 . 
 

ℂ𝐹𝕄(𝑥𝑛+1,𝑥𝑛 , 𝑡) = ℂ𝐹𝕄(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1, 𝑡) 

≤ (
ℂ𝐹𝕄(𝑥𝑛 , 𝑇𝑥𝑛 , 𝑡) + ℂ𝐹𝕄(𝑥𝑛−1, 𝑇𝑥𝑛−1, 𝑡)

ℂ𝐹𝕄(𝑥𝑛 , 𝑇𝑥𝑛 , 𝑡) + ℂ𝐹𝕄(𝑥𝑛−1, 𝑇𝑥𝑛−1, 𝑡) + 𝑙
)ℂ𝐹𝕄(𝑥𝑛, 𝑥𝑛−1,𝑡) 

≤ (
ℂ𝐹𝕄(𝑥𝑛,𝑥𝑛+1, 𝑡) + ℂ𝐹𝕄(𝑥𝑛−1,𝑥𝑛 , 𝑡)

ℂ𝐹𝕄(𝑥𝑛,𝑥𝑛+1, 𝑡) + ℂ𝐹𝕄(𝑥𝑛−1, 𝑥𝑛 , 𝑡) + 𝑙
)ℂ𝐹𝕄(𝑥𝑛,𝑥𝑛−1, 𝑡) 

 

Take 

 

𝜆𝑛 =
ℂ𝐹𝕄(𝑥𝑛,𝑥𝑛+1,𝑡)+ℂ𝐹𝕄(𝑥𝑛−1,𝑥𝑛 ,𝑡)

ℂ𝐹𝕄(𝑥𝑛,𝑥𝑛+1,𝑡)+ℂ𝐹𝕄𝑑(𝑥𝑛−1,𝑥𝑛,𝑡)+𝑙
  , 

 

We have 

    

ℂ𝐹𝕄(𝑥𝑛+1, 𝑥𝑛 , 𝑡) ≤ 𝜆𝑛ℂ𝐹𝕄(𝑥𝑛 , 𝑥𝑛−1, 𝑡)  

≤ (𝜆𝑛𝜆𝑛−1) ℂ𝐹𝕄(𝑥𝑛−1, 𝑥𝑛−2, 𝑡)  

≤ (𝜆𝑛𝜆𝑛−1 … 𝜆1) ℂ𝐹𝕄(𝑥1, 𝑥0, 𝑡). 
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Observe that (𝜆𝑛) is non increasing, with positive terms. So,𝜆1 … 𝜆𝑛 ≤ 𝜆1
𝑛

 and 𝜆1
𝑛 → 0. 

 

It follows that 

 

(𝜆1𝜆2 … 𝜆𝑛) = 0𝑛→∞
𝑙𝑖𝑚 . 

 

Thus, it is verified that 

 

 ℂ𝐹𝕄(𝑥𝑛+1,𝑥𝑛 , 𝑡) = 0𝑛→∞
𝑙𝑖𝑚   

 

Now for all 𝑚, 𝑛 ∈  ℕ 𝑎𝑛𝑑 𝑚 > 𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒 

 

ℂ𝐹𝕄(𝑥𝑚,𝑥𝑛 , 𝑡) ≤ ℂ𝐹𝕄(𝑥𝑛 , 𝑥𝑛+1, 𝑡) + ℂ𝐹𝕄(𝑥𝑛+1, 𝑥𝑛+2, 𝑡) + ⋯ℂ𝐹𝕄(𝑥𝑚−1, 𝑥𝑚 , 𝑡)  

≤ [(𝜆𝑛𝜆𝑛−1 … 𝜆1) + (𝜆𝑛+1𝜆𝑛 … 𝜆1) + ⋯ + (𝜆𝑚−1𝜆𝑚−2 … 𝜆1)] ℂ𝐹𝕄(𝑥1, 𝑥0, 𝑡)  

= ∑ (𝜆𝑘𝜆𝑘−1 … 𝜆1) ℂ𝐹𝕄(𝑥1, 𝑥0, 𝑡)𝑚−1
𝑘=𝑛   

 

‖ℂ𝐹𝕄(𝑥𝑚, 𝑥𝑛 , 𝑡)‖ ≤ 𝐿‖∑ (𝜆𝑘𝜆𝑘−1 … 𝜆1) ℂ𝐹𝕄(𝑥1, 𝑥0, 𝑡)𝑚−1
𝑘=𝑛 ‖  

‖ℂ𝐹𝕄(𝑥𝑚, 𝑥𝑛 , 𝑡)‖ ≤ 𝐿 ∑ (𝜆𝑘𝜆𝑘−1 … 𝜆1)𝑚−1
𝑘=𝑛 ‖ ℂ𝐹𝕄(𝑥1, 𝑥0, 𝑡)‖  

‖ℂ𝐹𝕄(𝑥𝑚, 𝑥𝑛 , 𝑡)‖    ≤ 𝐿 ∑ 𝑎𝑘
𝑚−1
𝑘=𝑛 ‖ℂ𝐹𝕄(𝑥1, 𝑥0, 𝑡)‖,  

 

Where 𝑎𝑘=(𝜆𝑘𝜆𝑘−1…𝜆1) and L is normal constant of  𝑆.  

 

Now 
𝑎𝑘+1

𝑎𝑘
< 1 𝑎𝑛𝑑 ∑ 𝑎𝑘

∞
𝑘=1

𝑘→∞

𝑙𝑖𝑚
is finite,  

 

and ∑ (𝜆𝑘𝜆𝑘−1 … 𝜆1)𝑚−1
𝑘=𝑛 → 0, 𝑎𝑠 𝑚, 𝑛 → ∞. 

 

Hence {𝑎𝑘} is convergent by D’ Alembert’s ratio test, therefore {𝑥𝑛} is a cauchy sequence. There is 𝑥 ′ ∈ 𝕏 such 

that  𝑥𝑛 → 𝑥 ′ 𝑎𝑠 𝑛 → ∞. 

 

ℂ𝐹𝕄(𝑇𝑥 ′, 𝑥 ′, 𝑡) ≤ ℂ𝐹𝕄(𝑇𝑥 ′, 𝑇𝑥𝑛 , 𝑡) + ℂ𝐹𝕄(𝑇𝑥𝑛 , 𝑥 ′, 𝑡)  

≤ (
ℂ𝐹𝕄(𝑥′,𝑇𝑥′,𝑡)+ℂ𝐹𝕄(𝑥𝑛,𝑇𝑥𝑛,𝑡)

ℂ𝐹𝕄(𝑥′,𝑇𝑥′,𝑡)+ℂ𝐹𝕄(𝑥𝑛 ,𝑇𝑥𝑛,𝑡)+𝑙
)ℂ𝐹𝕄(𝑥𝑛 , 𝑥 ′, 𝑡) + ℂ𝐹𝕄(𝑇𝑥𝑛 , 𝑥 ′, 𝑡)  

≤ (
ℂ𝐹𝕄(𝑥′,𝑇𝑥′,𝑡)+ℂ𝐹𝕄(𝑥𝑛,𝑇𝑥𝑛+1,𝑡)

ℂ𝐹𝕄(𝑥′,𝑇𝑥′,𝑡)+ℂ𝐹𝕄(𝑥𝑛 ,𝑇𝑥𝑛+1,𝑡)+𝑙
)ℂ𝐹𝕄(𝑥𝑛 , 𝑥 ′, 𝑡) + ℂ𝐹𝕄(𝑇𝑥𝑛+1, 𝑥 ′, 𝑡)  

ℂ𝐹𝕄(𝑇𝑥 ′, 𝑥 ′, 𝑡) ≤ 0  𝑎𝑠 𝑛 → ∞  

 

Therefore ‖ℂ𝐹𝕄(𝑇𝑥 ′, 𝑥 ′, 𝑡)‖ = 0.  

 

Thus, 𝑇𝑥 ′ = 𝑥 ′. 

 

Uniqueness 

  

Suppose 𝑥 ′ and 𝑦′ are two fixed points of  T.  

 

ℂ𝐹𝕄(𝑥 ′, 𝑦′, 𝑡) = ℂ𝐹𝕄(𝑇𝑥 ′, 𝑇𝑦 ′, 𝑡)  

≤ (
ℂ𝐹𝕄(𝑥′,𝑇𝑥′,𝑡)+ℂ𝐹𝕄(𝑦′,𝑇𝑦′,𝑡)

ℂ𝐹𝕄(𝑥′,𝑇𝑥′,𝑡)+ℂ𝐹𝕄(𝑦1,𝑇𝑦′,𝑡)+𝑙
)ℂ𝐹𝕄(𝑥 ′, 𝑦′, 𝑡)  

≤ 0  

 

Therefore ‖ℂ𝐹𝕄(𝑥 ′, 𝑦′, 𝑡)‖ = 0.  Thus 𝑥 ′ = 𝑦′. 
 

Hence  𝑥 ′ is an unique fuzzy fixed point of T. 

ii. Now 
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ℂ𝑭𝕄(𝑻𝒏𝒙′, 𝒙′, 𝒕) = ℂ𝑭𝕄(𝑻𝒏−𝟏𝑻𝒙′, 𝒙′, 𝒕) = ℂ𝑭𝕄(𝑻𝒏−𝟏𝒙′, 𝒙′, 𝒕) = ℂ𝑭𝕄(𝑻𝒏−𝟐(𝑻𝒙′), 𝒙′, 𝒕) … =
ℂ𝑭𝕄(𝑻𝒙′, 𝑻𝒙′, 𝒕) = 𝟎  

 

Hence 𝑻𝒏𝒙′ converges to a fuzzy fixed point, for all 𝒙′ ∈ 𝕏. 

 

Corollary 2.1: 

  

Let (𝕏,ℂ𝑭𝕄,∗) be a complete cone fuzzy metric space and 𝑺 be a normal cone with normal constant L. suppose 

the mapping 𝑻: 𝕏 → 𝕏 satisfies the following conditions: 

 

ℂ𝑭𝕄(𝑻𝒙, 𝑻𝒚, 𝒕) ≤ (
ℂ𝑭𝕄(𝒙,𝑻𝒙,𝒕)+ℂ𝑭𝕄(𝒚,𝑻𝒚,𝒕)

ℂ𝑭𝕄(𝒙,𝑻𝒙,𝒕)+ℂ𝑭𝕄(𝒚,𝑻𝒚,𝒕)+𝟏
)ℂ𝑭𝕄(𝒙, 𝒚, 𝒕 )                                                                   (2) 

 

For all 𝒙, 𝒚 ∈ 𝕏. Then 

  

1. T has fuzzy unique fixed point in 𝕏. 

2. 𝑻𝒏𝒙′ Converges to a fuzzy fixed point, for all 𝒙′ ∈ 𝕏. 

 

Proof  : 

  

The proof of the corollary immediate by 

  

Taking 𝒍 = 𝟏 in the above theorem. 

 

 Theorem 2.2: 

  

Let (𝕏,ℂ𝑭𝕄,∗) be a complete fuzzy metric space and let T be a mapping from 𝕏 into itself. Suppose that T 

satisfies the following condition: 

 

ℂ𝑭𝕄(𝑻𝒙, 𝑻𝒚, 𝒕) ≤ (
ℂ𝑭𝕄(𝒚,𝑻𝒚,𝒕)

ℂ𝑭𝕄(𝒙,𝑻𝒙,𝒕)+ℂ𝑭𝕄(𝒚,𝑻𝒚,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙, 𝒚, 𝒕 )                                                                    (3) 

 

For all 𝒙, 𝒚 ∈ 𝕏, 𝒘𝒉𝒆𝒓𝒆 𝒍 ≥ 𝟏 & 𝒕 ∈ 𝕏  . Then 

  

1. T has unique fuzzy fixed point in 𝕏. 

2. 𝑻𝒏𝒙′ Converges to a fuzzy fixed point, for all 𝒙′ ∈ 𝕏. 

 

Proof  : 

 

1. Let 𝒙𝟎 ∈ 𝕏 be arbitrary and choose a sequence {𝒙𝒏} such that 𝒙𝒏+𝟏 =  𝑻 𝒙𝒏 

 

We have 

 

ℂ𝑭𝕄(𝒙𝒏+𝟏, 𝒙𝒏, 𝒕) = ℂ𝑭𝕄(𝑻 𝒙𝒏, 𝑻 𝒙𝒏−𝟏, 𝒕)  

≤ (
ℂ𝑭𝕄(𝒙𝒏−𝟏,𝑻𝒙𝒏−𝟏,𝒕)

ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏−𝟏, 𝒕)  

≤ (
ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)

ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏−𝟏, 𝒕)  

≤ (
ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)

ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏−𝟏, 𝒕)  

 

Take 

 

𝝀𝒏 =
ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)

ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+𝒍
  

We have 

 



 

 
 

 

Kumar and Thiruveni; Asian Res. J. Math., vol. 19, no. 10, pp. 57-66, 2023; Article no.ARJOM.104143 
 

 

 
62 

 

ℂ𝑭𝕄(𝒙𝒏+𝟏, 𝒙𝒏, 𝒕) ≤ 𝝀𝒏ℂ𝑭𝕄(𝒙𝒏, 𝒙𝒏−𝟏, 𝒕)  

≤ (𝝀𝒏𝝀𝒏−𝟏)ℂ𝑭𝕄(𝒙𝒏−𝟏, 𝒙𝒏−𝟐, 𝒕)     

≤ (𝝀𝒏𝝀𝒏−𝟏 … 𝝀𝟏) ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕).  

 

Observe that {𝝀𝒏} is non- increasing, with positive terms.  

 

So, (𝝀𝟏 … 𝝀𝒏) ≤ 𝝀𝟏
𝒏 → 𝟎. It follows that 

 

(𝝀𝟏𝝀𝟐 … 𝝀𝒏) = 𝟎𝒏→∞
𝒍𝒊𝒎 . 

 

Thus, it is verified that  

    

 ℂ𝑭𝕄(𝒙𝒏+𝟏,𝒙𝒏, 𝒕) = 𝟎𝒏→∞
𝒍𝒊𝒎 . 

 

Now for all 𝒎, 𝒏 𝝐 ℕ we have 

 

ℂ𝑭𝕄(𝒙𝒎,𝒙𝒏, 𝒕) ≤ ℂ𝑭𝕄(𝒙𝒏, 𝒙𝒏+𝟏, 𝒕) + ℂ𝑭𝕄(𝒙𝒏+𝟏, 𝒙𝒏+𝟐, 𝒕) + ⋯ℂ𝑭𝕄(𝒙𝒎−𝟏, 𝒙𝒎, 𝒕)  

≤ [(𝝀𝒏𝝀𝒏−𝟏 … 𝝀𝟏) + (𝝀𝒏+𝟏𝝀𝒏 … 𝝀𝟏) + ⋯ + (𝝀𝒎−𝟏𝝀𝒎−𝟐 … 𝝀𝟏)] ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)  

= ∑ (𝝀𝒌𝝀𝒌−𝟏 … 𝝀𝟏) ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)𝒎−𝟏
𝒌=𝒏   

 

‖ℂ𝑭𝕄(𝒙𝒎, 𝒙𝒏, 𝒕)‖ ≤ 𝑳‖∑ (𝝀𝒌𝝀𝒌−𝟏 … 𝝀𝟏) ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)𝒎−𝟏
𝒌=𝒏 ‖  

‖ℂ𝑭𝕄(𝒙𝒎, 𝒙𝒏, 𝒕)‖ ≤ 𝑳 ∑ (𝝀𝒌𝝀𝒌−𝟏 … 𝝀𝟏)𝒎−𝟏
𝒌=𝒏 ‖ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)‖  

‖ℂ𝑭𝕄(𝒙𝒎, 𝒙𝒏, 𝒕)‖    ≤ 𝑳 ∑ 𝒂𝒌
𝒎−𝟏
𝒌=𝒏 ‖ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)‖, 

 

Where 𝒂𝒌=(𝝀𝒌𝝀𝒌−𝟏…𝝀𝟏) and L is normal constant of  𝑺.  

 

 Now 
𝒂𝒌+𝟏

𝒂𝒌
< 𝟏 𝒂𝒏𝒅 ∑ 𝒂𝒌

∞
𝒌=𝟏

𝒌→∞

𝒍𝒊𝒎
is finite, and 

 

 ∑  (𝝀𝒌𝝀𝒌−𝟏 … 𝝀𝟏)𝒎−𝟏
𝒌=𝒏 → 𝟎, 𝒂𝒔 𝒎, 𝒏 → ∞. 

 

Hence {𝒂𝒌} is convergent by D’ Alembert’s ratio test, therefore {𝒙𝒏} is a cauchy sequence. There is 𝒙′ ∈ 𝕏 such 

that  𝒙𝒏 → 𝒙′ 

 

ℂ𝑭𝕄(𝑻𝒙′, 𝒙′, 𝒕) ≤ ℂ𝑭𝕄(𝑻𝒙′, 𝑻𝒙𝒏, 𝒕) + ℂ𝑭𝕄(𝑻𝒙𝒏, 𝒙′, 𝒕)     

≤ (
ℂ𝑭𝕄(𝒙′,𝑻𝒙′,𝒕)+ℂ𝑭𝕄(𝒙𝒏,𝑻𝒙𝒏 ,𝒕)

ℂ𝑭𝕄(𝒙′,𝑻𝒙′,𝒕)+ℂ𝑭𝕄(𝒙𝒏,𝑻𝒙𝒏 ,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙𝒏, 𝒙′, 𝒕) + ℂ𝑭𝕄(𝑻𝒙𝒏, 𝒙′, 𝒕)    

≤ (
ℂ𝑭𝕄(𝒙′,𝑻𝒙′,𝒕)+ℂ𝑭𝕄(𝒙𝒏,𝑻𝒙𝒏+𝟏,𝒕)

ℂ𝑭𝕄(𝒙′,𝑻𝒙′,𝒕)+ℂ𝑭𝕄(𝒙𝒏,𝑻𝒙𝒏+𝟏,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙𝒏, 𝒙′, 𝒕) + ℂ𝑭𝕄(𝑻𝒙𝒏+𝟏, 𝒙′, 𝒕)  

 

 ℂ𝑭𝕄(𝑻𝒙′, 𝒙′, 𝒕) ≤ 𝟎    as 𝒏 → ∞  
 

Therefore ‖ℂ𝑭𝕄(𝑻𝒙′, 𝒙′, 𝒕)‖ = 𝟎. Thus, 𝑻𝒙′ = 𝒙′. 

 

Uniqueness 

  

Suppose  𝒙′ and 𝒚′ are two fuzzy fixed points of  T.  

 

ℂ𝑭𝕄(𝒙′, 𝒚′, 𝒕) = ℂ𝑭𝕄(𝑻𝒙′, 𝑻𝒚′, 𝒕)  

≤ (
ℂ𝑭𝕄(𝒙′,𝑻𝒙′,𝒕)+ℂ𝑭𝕄(𝒚′,𝑻𝒚′,𝒕)

ℂ𝑭𝕄(𝒙′,𝑻𝒙′,𝒕)+ℂ𝑭𝕄(𝒚′,𝑻𝒚′,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙′, 𝒚′, 𝒕)  

   ≤ 𝟎 

 

Therefore ‖ℂ𝑭𝕄(𝒙′, 𝒚′, 𝒕)‖ = 𝟎. Thus 𝒙′ = 𝒚′. 
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Hence  𝒙′ is an unique fuzzy fixed point of T. 

 

2. Now 

 

ℂ𝑭𝕄(𝑻𝒏𝒙′, 𝒙′, 𝒕) = ℂ𝑭𝕄(𝑻𝒏−𝟏𝑻′, 𝒙′, 𝒕) = ℂ𝑭𝕄(𝑻𝒏−𝟏𝒙′, 𝒙′, 𝒕) = ℂ𝑭𝕄(𝑻𝒏−𝟐(𝑻𝒙′), 𝒙′, 𝒕) … =
ℂ𝑭𝕄(𝑻𝒙′, 𝑻𝒙′, 𝒕) = 𝟎  

 

Hence 𝑻𝒏𝒙′ converges to a fuzzy fixed point, for all  𝒙′ ∈ 𝕏. 

 

Corollary 2.2: 

  

Let  (𝕏,ℂ𝑭𝕄,∗) be a complete fuzzy metric space and let T be a mapping from 𝕏 into itself. Suppose that T 

satisfies the following condition: 

 

ℂ𝑭𝕄(𝑻𝒙,𝑻𝒚,, 𝒕) ≤ (
ℂ𝑭𝕄(𝒚,𝑻𝒚,𝒕)

ℂ𝑭𝕄(𝒙,𝑻𝒙,𝒕)+ℂ𝑭𝕄(𝒚,𝑻𝒚,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙, 𝒚, 𝒕 )                                                                    (4) 

For all 𝒙, 𝒚 ∈ 𝕏,where 𝒍 ≥ 𝟏 & 𝒕 ∈ 𝕏. Then  

 

1. T has Specific fuzzy fixed point in 𝕏. 
2. 𝑻𝒏𝒙′ converges to a fuzzy fixed point, for all 𝒙′ ∈ 𝕏. 

 

Proof  : 

 

The proof of the corollary immediate by 

  

Taking 𝒍 = 𝟏 in the above theorem. 

 

Theorem 2.3: 

  

Let (𝕏,ℂ𝑭𝕄,∗) be a complete cone metric space and P be a normal cone with ordinary constant L. suppose the 

mapping 𝑻: 𝕏 → 𝕏 satisfies the following conditions: 

 

ℂ𝑭𝕄(𝑻𝒙, 𝑻𝒚, 𝒕) ≤ (
ℂ𝑭𝕄(𝒙,𝑻𝒚,𝒕)+ℂ𝑭𝕄(𝒚,𝑻𝒙,𝒕)

ℂ𝑭𝕄(𝒙,𝑻𝒙,𝒕)+ℂ𝑭𝕄(𝒚,𝑻𝒚,𝒕)+𝒍
) (ℂ𝑭𝕄(𝒙, 𝑻𝒚, 𝒕) + ℂ𝑭𝕄(𝒚, 𝑻𝒙, 𝒕))                                   (5) 

 

For all  𝒙, 𝒚 ∈ 𝕏, 𝒘𝒉𝒆𝒓𝒆 𝒍 ≥ 1 & 𝒕 ∈ 𝕏 . Then 

 

1. T has unique fuzzy fixed point in 𝕏.  

2. 𝑻𝒏𝒙′converges to a fuzzy fixed point, for all 𝒙′ ∈ 𝕏. 

 

Proof : 

  

Let 𝒙𝟎 ∈ 𝕏 be arbitrary and choose a sequence {𝒙𝒏} such that 𝒙𝒏+𝟏 = 𝑻𝒙𝒏.   

 

ℂ𝑭𝕄(𝒙𝒏, 𝒙𝒏+𝟏, 𝒕) = ℂ𝑭𝕄(𝑻𝒙𝒏, 𝑻 𝒙𝒏−𝟏, 𝒕)  

≤ (
ℂ𝑭𝕄(𝒙𝒏,𝑻𝒙𝒏−𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝑻𝒙𝒏,𝒕)

ℂ𝑭𝕄(𝒙𝒏,𝑻𝒙𝒏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝑻𝒙𝒏−𝟏,𝒕)+𝒍
) (ℂ𝑭𝕄(𝒙𝒏, 𝑻𝒙𝒏, 𝒕) + ℂ𝑭𝕄(𝒙𝒏−𝟏, 𝑻𝒙𝒏−𝟏, 𝒕))  

≤ (
ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏 ,𝑡)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏+𝟏,𝒕)

ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+𝒍
) (ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏, 𝒕) + ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏−𝟏, 𝒕))  

≤ (
ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏+𝟏,𝒕)

ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+𝒍
) (ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏, 𝒕) + ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏−𝟏, 𝒕))  

≤ (
ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+ℂ𝑭𝕄(𝒙𝑛,𝒙𝒏+𝟏,𝒕)

ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+𝒍
) (ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏, 𝒕) + ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏−𝟏, 𝒕))  

 

Take  

 

𝝀𝒏 =
ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)

ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏,𝒕)+𝒍
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We have 

 

ℂ𝑭𝕄(𝒙𝒏+𝟏,𝒙𝒏, 𝒕) ≤ 𝝀𝒏 (ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏+𝟏, 𝒕) + ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏−𝟏, 𝒕))  

(𝟏 − 𝝀𝒏) ℂ𝑭𝕄(𝒙𝒏+𝟏,𝒙𝒏, 𝒕) ≤ 𝝀𝒏 ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏−𝟏, 𝒕)  

ℂ𝑭𝕄(𝒙𝒏+𝟏,𝒙𝒏, 𝒕) ≤
𝝀𝒏

(𝟏−𝝀𝒏)
ℂ𝑭𝕄(𝒙𝒏,𝒙𝒏−𝟏, 𝒕)  

 

≤
𝝀𝒏𝝀𝒏−𝟏

(𝟏−𝝀𝒏)(𝟏−𝝀𝒏−𝟏)
 ℂ𝑭𝕄(𝒙𝒏−𝟏,𝒙𝒏−𝟐, 𝒕)  

≤
𝝀𝒏𝝀𝒏−𝟏…𝝀𝟏

(𝟏−𝝀𝒏)(𝟏−𝝀𝒏−𝟏)…(𝟏−𝝀𝟏)
ℂ𝑭𝕄(𝒙𝟏,𝒙𝟎, 𝒕).  

≤ 𝜸𝒏 ℂ𝑭𝕄(𝒙𝟏,𝒙𝟎, 𝑡)  

 

Where 

 

𝜸𝒏 =
𝝀𝒏𝝀𝒏−𝟏…𝝀𝟏

(𝟏−𝝀𝒏)(𝟏−𝝀𝒏−𝟏)…(𝟏−𝝀𝟏)
  

 

Observe that {𝝀𝒏} is non increasing, with positive terms. So,  (𝝀𝟏 … 𝝀𝒏) ≤ 𝝀𝟏
𝒏 → 𝟎. 

 

 It follows that 

 

 (𝝀𝟏𝝀𝟐 … 𝝀𝒏) = 𝟎𝒏→∞ 
𝒍𝒊𝒎 .  

 

Therefore 

 

 𝜸𝒏 = 𝟎𝒏→∞
𝒍𝒊𝒎   

 

Thus, it is verified that  

 

 ℂ𝑭𝕄(𝒙𝒏+𝟏,𝒙𝒏, 𝒕) = 𝟎𝒏→∞
𝒍𝒊𝒎 .  

 

Now for all 𝒎, 𝒏 𝝐ℕ we have 

 

ℂ𝑭𝕄(𝒙𝒎,𝒙𝒏, 𝒕) ≤ ℂ𝑭𝕄(𝒙𝒏, 𝒙𝒏+𝟏, 𝒕) + ℂ𝑭𝕄(𝒙𝒏+𝟏, 𝒙𝒏+𝟐, 𝒕) + ⋯ℂ𝑭𝕄(𝒙𝒎−𝟏, 𝒙𝒎, 𝒕)  

≤ [(𝜸𝒏 + 𝜸𝒏+𝟏 + ⋯ + 𝜸𝒎−𝟏)] ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)  

≤ ∑ 𝜸𝒌 ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)𝒎−𝟏
𝒌=𝒏    

 

‖ℂ𝑭𝕄(𝒙𝒎, 𝒙𝒏, 𝒕)‖ ≤ 𝑳‖∑ 𝜸𝒌 ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)𝒎−𝟏
𝒌=𝒏 ‖  

‖ℂ𝑭𝕄(𝒙𝒎, 𝒙𝒏, 𝒕)‖ ≤ 𝑳 ∑ 𝜸𝒌
𝒎−𝟏
𝒌=𝒏 ‖ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)‖  

‖ℂ𝑭𝕄(𝒙𝒎, 𝒙𝒏, 𝒕)‖    ≤ 𝑳 ∑ 𝒂𝒌
𝒎−𝟏
𝒌=𝒏 ‖ℂ𝑭𝕄(𝒙𝟏, 𝒙𝟎, 𝒕)‖, 

 

where  𝒂𝒌=𝜸𝒌 and L is normal constant of S.  

 

 Now
𝒂𝒌+𝟏

𝒂𝒌
< 𝟎 𝒂𝒏𝒅 ∑ 𝒂𝒌

∞
𝒌=𝟏

𝒌→∞

𝒍𝒊𝒎
is finite.  

 

Since ∑ 𝜸𝒌
𝒎−𝟏
𝒌=𝒏  is convergent by D’ Alembert’s ratio test as 𝒎 → ∞. 

 

 Therefore {𝒙𝒏} is a cauchy sequence.  

 

There is 𝒙′ ∈ 𝕏 such that  𝒙𝒏 → 𝒙′ as 𝒏 → ∞ 

 

ℂ𝑭𝕄(𝑻𝒙′, 𝒙′, 𝒕) ≤ ℂ𝑭𝕄(𝑻𝒙′, 𝑻𝒙𝒏, 𝒕) + ℂ𝑭𝕄(𝑻𝒙𝒏, 𝒙′, 𝒕)     

≤ (
ℂ𝑭𝕄(𝒙′,𝑻𝒙𝒏 ,𝒕)+ℂ𝑭𝕄(𝒙𝒏 ,𝑻𝒙′,𝒕)

ℂ𝑭𝕄(𝒙′,𝑻𝒙𝒏)+ℂ𝑭𝕄(𝒙𝒏,,𝑻𝒙′,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙𝒏, 𝑥 ′, 𝒕) +  ℂ𝑭𝕄(𝑻𝒙𝒏, 𝒙′, 𝒕)    
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≤ (
ℂ𝑭𝕄(𝒙′,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏,𝑻𝒙′,𝒕)

ℂ𝑭𝕄(𝒙′,𝒙𝒏+𝟏,𝒕)+ℂ𝑭𝕄(𝒙𝒏 ,𝑻𝒙′,𝒕)+𝒍
)ℂ𝑭𝕄(𝒙𝒏, 𝒙′, 𝒕) + ℂ𝑭𝕄(𝑻𝒙𝒏+𝟏, 𝒙′, 𝒕)  

 ℂ𝑭𝕄(𝑻𝒙′, 𝒙′, 𝒕) ≤ 𝟎    as 𝒏 → ∞  
 

Therefore ‖ℂ𝑭𝕄(𝒙′, 𝑻𝒙′, 𝒕)‖ = 𝟎.  

 

Thus, 𝑻𝒙′ = 𝒙′. 

 

Uniqueness 

  

Suppose  𝒙′ 𝒂𝒏𝒅 𝒚′ are two fuzzy fixed points of T.  

 

ℂ𝑭𝕄(𝒙′, 𝒚′, 𝒕) = ℂ𝑭𝕄(𝑻𝒙′, 𝑻𝒚′, 𝒕)  

≤ (
ℂ𝑭𝕄(𝒙′ ,𝑻𝒚′,𝒕)+ℂ𝑭𝕄(𝒚′,𝑻𝒙′ ,𝒕)

ℂ𝑭𝕄(𝒙′ ,𝑻𝒙′,𝒕)+ℂ𝑭𝕄(𝒚′,𝑻𝒚′,𝒕)+𝒍
) (ℂ𝑭𝕄(𝒙′, 𝑻𝒙′, 𝒕) + ℂ𝑭𝕄(𝒚′, 𝑻𝒚′, 𝒕))  

   ≤ 𝟎  

 

Therefore ‖ℂ𝑭𝕄(𝒙′, 𝒚′, 𝒕)‖ = 𝟎. Thus 𝒙′ = 𝒚′. 
 

Hence  𝒙′ is an unique fuzzy fixed point of  T. 

 

(ii)  Now 

 

ℂ𝑭𝕄(𝑻𝒏𝒙′, 𝒙′, 𝒕) = ℂ𝑭𝕄(𝑻𝒏−𝟏(𝑻𝒙′), 𝒙′, 𝒕) = ℂ𝑭𝕄(𝑻𝒏−𝟏𝒙′, 𝒙′, 𝒕) = ℂ𝑭𝕄(𝑻𝒏−𝟐(𝑻𝒙′), 𝒙′, 𝒕) … =
ℂ𝑭𝕄(𝑻𝒙′, 𝒙′, 𝒕) = 𝟎  

 

Hence 𝑻𝒏𝒙′ converges to a fuzzy fixed point, for all  𝒙′ ∈ 𝕏. 

 

Corollary 2.3: 

  

Let  (𝕏,ℂ𝑭𝕄,∗) be a complete fuzzy metric space and let T be a mapping from 𝑺 be a normal cone with normal 

constant L.   Suppose the mapping 𝑻: 𝕏 → 𝕏 Satisfies the subsequent condition:   

 

ℂ𝑭𝕄(𝑻𝒙,𝑻𝒚,𝒕) ≤ (
ℂ𝑭𝕄(𝒙,𝑻𝒚,𝒕)+ℂ𝑭𝕄(𝒚,𝑻𝒙,𝒕)

ℂ𝑭𝕄(𝒙,𝑻𝒙,𝒕)+ℂ𝑭𝕄(𝒚,𝑻𝒚,𝒕)+𝒍
) (ℂ𝑭𝕄(𝒙, 𝑻𝒙, 𝒕) + ℂ𝑭𝕄(𝒚, 𝑻𝒚, 𝒕))                                     (6) 

 

For all 𝒙, 𝒚 ∈ 𝕏.  Then  

 

1. T has unique fuzzy fixed point in 𝕏. 

2. 𝑻𝒏𝒙′ converges to a fuzzy fixed point, for all 𝒙′ ∈ 𝕏. 

 

Proof  : 

 

The evidence of the corollary on the spot by taking 𝑳 = 𝟏 within side the above theorem. 
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