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A plethora of environmental risk factors has been persistently implicated

in the pathogenesis of amyotrophic lateral sclerosis (ALS), including

metal/metalloids. This study aimed to examine potential associations between

cerebral spinal fluid (CSF) metal/metalloids and ALS risks. CSF concentrations

of copper (Cu), nickel (Ni), mercury (Hg), arsenic (As), manganese (Mn),

and iron (Fe) in ALS (spinal- and bulbar-onset) patients and controls were

measured using inductively coupled plasma mass spectrometry (ICP-MS).

Results from this study revealed marked differences between control, spinal-

onset, and bulbar-onset groups. We report that Cu levels were lower in

the ALS and spinal-onset groups compared to the control group. Ni level

were higher in the spinal-onset group compared to the control and bulbar-

onset groups. In addition, associations between CSF metal/metalloid levels

with disease severity, sex, and serum triglycerides were also examined

to broach the potential relevance of neurotoxic metal/metalloids in ALS

disease heterogeneity.
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Introduction

Amyotrophic lateral sclerosis (ALS), also referred to as “Lou Gehrig’s disease,”
is a debilitating neurodegenerative disease with an incredibly intricate etiology. ALS
manifestation is theorized as a stepwise process that involves both susceptible variants
and environmental triggers (Al-Chalabi and Hardiman, 2013; Paez-Colasante et al.,
2015; Cook and Petrucelli, 2019). The multifaceted pathogenic mechanisms coupled
with genetic variability and complex environmental exposure may be important reasons
for the complex biological heterogeneity of ALS, as well as why many preclinical
ALS treatment trials fail in phase 3. Notably, a proportion of ALS patients (∼10%)
show Mendelian inheritance while the majority (∼90%) of cases occur sporadically
with no familial history. Moreover, at least 30 genes have been correlated with ALS.
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Namely, C9orf72, TARDBP, SOD1, and FUS account for 70% of
familial ALS cases in European populations (Chiò et al., 2014).
However, unlike schizophrenia patients who show a number
of common variants, ALS pathogenesis is primarily based on
rare variants (van Rheenen et al., 2016). Large population-
based analyses have suggested that certain risk variants have
higher susceptibility for disease manifestation when coupled
with environmental risk factors (Hardiman et al., 2017). Early
case-control studies conducted in Guam and Japan suggested
that exposure to cyanotoxins is correlated with high ALS
susceptibility (Bradley et al., 2013). Other risk factors include
military service, metals/metalloids, pesticides and insecticides,
electromagnetic fields, physical activity, head injury, glutamate
toxicity, and smoking (Talbott et al., 2016). At the molecular
level, impairment in RNA metabolism, protein homeostasis,
neuroinflammation and mitochondrial dysfunction have all
been evidenced in ALS pathogenesis (Higgins et al., 2003;
Wang et al., 2011; Brites and Vaz, 2014; Magrané et al.,
2014; Sama et al., 2014; Conicella et al., 2016; Hardiman
et al., 2017). It is important to note that dysregulations of
the above cellular processes in ALS are likely to interact and
culminate leading to disruptions in the broader mechanistic
network, and that it is unlikely that any one of the dysregulated
mechanisms is singularly responsible for ALS pathogenesis. The
same should be considered when investigating the roles of
environmental risk factors. However, the extent and order of
event for each of these factors on disease contribution remains
unclear.

Metal/metalloid imbalance has been implicated in various
human diseases including cancer, cardiovascular disease, and

neurodegenerative diseases. Correlation between heavy and
trace metals such as lead (Pb), mercury (Hg), Chromium
(Cr), arsenic (As), cadmium (Cd), aluminum (Al), manganese
(Mn), magnesium (Mg), selenium (Se), nickel (Ni), copper
(Cu), and zinc (Zn) have been investigated in a number of
ALS studies (Al-Chalabi and Hardiman, 2013; Bocca et al.,
2015; Dickerson et al., 2020; Farace et al., 2020). However
due to varied methods, medium, populations studied, and
heterogeneity of the disease, there exist large variations between
studies making replication of results difficult. To date, no
study has found causative links between metal/metalloid
imbalance and ALS onset. For instance, onset of ALS can
be clinically classified as either spinal, muscle weakness
starting in the limbs, or bulbar, symptoms characterized by
difficulties in swallowing and speech. Progression rate of
bulbar onset ALS tend to be faster than spinal onset, and is
considered the more severe variant. Males are more likely to
develop spinal onset, while females have increased likelihood
of developing bulbar onset (Logroscino et al., 2010). Men
(1:350) also have higher lifetime risks than women (1:400)
(Colombrita et al., 2009; Chang et al., 2012; van Es et al.,
2017). Current prognosis for survival is 2–5 years after
initial diagnosis (Miller et al., 2009; Brown and Al-Chalabi,
2017; Hulisz, 2018). Bulbar onset, lower ALS Functional
Rating Scale (ALSFRS-R) score, and older patients often
show lower survival rate (Kiernan et al., 2011). Additionally,
ALS incidence differs by geographical region and ethnicity.
Currently, most epidemiological studies have been based on
European populations, which have an incidence rate of 2–3
cases per 100,000 individuals (Logroscino and Piccininni, 2019).
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Notably, regions with relatively more homogenous populations
such as Scotland and Ireland, incidence rates are particularly
high (2.6/100,000 individuals). On the contrary, East and
South Asia have shown lower incidence rates (0.7–0.8/100,000
individuals), although there is still a lack of epidemiological
studies for individual countries in these regions (Logroscino
et al., 2010; Joensen, 2012; Chiò et al., 2013; Marin et al.,
2014). In addition to incidence, survival rate also varies greatly
by geography. Specifically, European populations have been
evidenced to have shorter (24 months) survival time than
Central Asian populations (48 months) (Marin et al., 2016).
Representational studies from a diverse range of geographical
regions are necessary for deeper understanding the roles
of genetics and metal/metalloid imbalance on ALS disease
pathogenesis.

In this study, we aim to assess potential differences in
levels of heavy and trace metals/metalloids found in the
cerebral spinal fluid (CSF) of ALS patients and corresponding
controls. Specifically, we examined levels of copper (Cu),
nickel (Ni), mercury (Hg), arsenic (As), manganese (Mn), and
iron (Fe) using ICP-MS in 29 ALS patients and 9 controls
from a cohort based in Shaanxi, China (Northwestern region).
Findings from this study reveal onset- and sex-dependent
metal dyshomeostasis in ALS patient CSF as well as potential
mixture effects.

Subjects and methods

Study population

Twenty-nine sporadic cases diagnosed with definite
ALS according to the revised El Escorial criteria and 9
age- and sex-matched controls recruited from the First
Affiliated Hospital of Xi’an Jiaotong University (China)
were included in this observational study. The control
group consist individuals with non-neurodegenerative
diseases such as headache and lower pack pain. As part of
routine hospital visit, baseline demographic information,
location of onset, ALSFRS-r score, smoking, drinking
and exposure history, and laboratory test results were
collected. All demographic and clinical information were
collected by medical professionals. All participants provided
informed consent prior to the procedures. This study was
approved by the Institutional Ethical Committee of Xi’an
Jiaotong University.

Cerebral spinal fluid collection

CSF samples were obtained by lumbar pucture in the
L3/L4 or L4/L5 interspace and collected into trace element free
polypropylene tubes in 1 mL aliquots. All procedures were

conducted at the First Affiliated Hospital of Xi’an Jiaotong
University. Samples were gently mixed and centrifuged at
2,000g at 4◦C for 10 min to eliminate insoluble materials
and cells. Immediately after, samples were deep frozen and
stored at −80◦C until further analysis at Xi’an Jiaotong
University iHarbor Research Center. Samples were thawed on
ice prior to analysis.

Metal/metalloid analysis

Aliquots of 200 µL CSF samples were diluted 10 folds with
65% Nitric Acid (Sinpharm Chemical Reagent Co., Ltd) and 31%
hydrogen peroxide. Samples were dissolved on heat block (AS
ONE, CHP-250DF, Japan) at 150◦C. All metals [selenium (Se),
copper (Cu), nickel (Ni), mercury (Hg), arsenic (As), manganese
(Mn), cadmium (Cd), chromium (Cr), iron (Fe), and lead
(Pb)] were quantified using Inductively Coupled Plasma-Mass
Spectrometer (ICP-MS, PerkinElmer, NexION R© 350D, USA)
in Nebulizer Gas Flow STD/KED (Instrumental parameters:
Nebulizer Gas Flow 0.85 L/min, Auxiliary Gas Flow1.45 L/min,
Mass range: 1∼260 a.m.u, Dark noise <0.2, Sensitivity:
>105 cps/ppb 115 In, Long term stability: <4%, Precise
of isotopic ratio: <0.1%). All blank samples were analyzed
concurrently as the collected samples to ensure accuracy. The
limit of quantification (LOQ) for each element were calculated
and expressed as µg/L for all the metals 12.5 Selenium (Se),
0.475 Copper (Cu), 0.1 Nickel (Ni), 0.05 (Hg), 0.175 Arsenic
(As), 0.55 Manganese (Mn), 0.01 (Cd), 4.8 (Cr), 21.475 (Fe),
1.225 (Pb). Because measurements for Se, Cd, Cr, and Pb were
below the LOQ, results for these metal/metalloids have been
omitted.

Serum triglyceride quantification

Blood tests were performed at the First Affiliated Hospital
of Xi’an Jiaotong University during patients’ first visit
to the hospital (after experiencing first symptoms). Fresh
blood samples (after overnight fasting) were tested for
serum triglyceride.

Statistical analysis

Statistical analyses were performed using the GraphPad
Prism 8.0 software and R (ggplot2). All demographic
information was presented as frequencies along with
percentages. Comparative analyses of each metal/metalloid
between groups were carried out using non-parametric pair-
wise Mann–Whitney tests, p-value <0.05 was considered
statistically significant. Results are presented as medians, 25th,
and 75th interquartile ranges (IQR).
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Results

Baseline demographic data

A total of 38 participants were included in this study, 29 ALS
cases, and 9 controls. As shown in Table 1, 4 females (44.44%)
and 5 males (55.56%) were included in the control group. For the
ALS group, 16 were female (55.17%) and 13 were male (44.83%).
The median age was 59.1 years (51–73) and 55.63 years (42–
69) for the control and ALS groups, respectively. The average
ALSFRS-R scores for the ALS patients was 41.73 (21–48). We
further divided the ALS group into spinal (n = 20) and bulbar
(n = 9) onset groups. In the spinal onset group, 9 cases were
female (45%) and 11 were male (55%). In the bulbar onset group,
there was a higher percentage of female cases (77.78%, n = 7)
compared to male cases (22.22%, n = 2). The median ages for
the spinal and bulbar onset groups were 55.7 (42–69) and 55.5
(44–67) years, respectively. The average ALSFRS-R score for the
spinal group was 40.9 (21–47) and 43.4 (34–48) for the bulbar
group.

Cerebral spinal fluid metal/metalloid
levels

ICP-MS was used to measure levels of Cu, Ni, Hg, As, Mn,
and Fe in CSF of ALS patients and corresponding controls.
Data were analyzed at multiple levels to thoroughly examine
variation in metal/metalloid levels based on disease onset,
progression, as well as sex and potential synergistic effects.
First, we analyzed differences in metal levels between ALS
patients and corresponding controls. Interestingly, contrary
to previous findings, none of the metals in our study were
found significantly different between control and ALS groups
except for Cu, which was found lower in the ALS group
(Cu = 80.12 µg/L, p = 0.05) compared to the control group
(Cu = 129.7 µg/L) (Table 2). Noted, confounding factors

TABLE 1 Baseline demographic characteristics for ALS
cases and controls.

Control ALS

Non-ALS
(N = 9)

Total
(N = 29)

Spinal
onset

(N = 20)

Bulbar
onset

(N = 9)

Sex

Females 4 (44.44%) 16 (55.17%) 9 (45%) 7 (77.78%)

Males 5 (55.56%) 13 (44.83%) 11 (55%) 2 (22.22%)

Median age (years) 59.1 (51–73) 55.63
(42–69)

55.7 (42–69) 55.5 (44–67)

Average ALSFRSR – 41.73
(21–48)

40.9 (21–47) 43.4 (34–48)

TABLE 2 CSF metal/metalloid levels (median, 25th, and 75th
percentile) for ALS cases and controls.

Metal/metalloid
(µg/L)

Control
N = 9

Median (IQR)

ALS
N = 29

Median (IQR)

P-value

Cu* 129.70 (95.55–258.7) 80.12 (70.25–138.5) 0.05

Ni 2.23 (1.84–3.73) 3.66 (3.10–5.52) 0.07

Hg 0.27 (0.10–0.76) 0.26 (0.16–0.38) 0.61

As 0.90 (0.59–1.55) 0.70 (0.58–1.24) 0.52

Mn 2.07 (1.39–2.85) 1.75 (1.43–2.72) 0.51

Fe 283.0 (197.8–371.9) 201.3 (157.1–296.0) 0.19

including age, smoking, drinking, education level, and BMI
showed no significant effects. Copper deficiency in ALS patients
has also been reported in previous studies (Weihl and Lopate,
2006; Barros et al., 2018). Second, we divided the ALS group into
bulbar and spinal onset groups to examine potential differences
in metal levels between different types of ALS onset (Figure 1).
As shown in Table 3, Cu levels were significantly lower in
the spinal group (Cu = 78.11 µg/L, p = 0.04) compared to
the control group (Cu = 129.7 µg/L). However, there was
no noteworthy difference in Cu levels between bulbar onset
and control groups. These results suggest that low Cu levels
found in the ALS group may be predominantly contributed by
spinal onset patients. In addition, Ni levels were significantly
higher in the spinal group (Ni = 4.21 µg/L) compared to both
control (Ni = 2.23 µg/L, p = 0.02) and bulbar (Ni = 3.30 µg/L,
p = 0.03) groups. These results indicate potential differences
in metal levels between bulbar and spinal onset patients, and
that low Cu and high Ni levels may be associated with spinal
onset. Third, we analyzed potential sex-dependent differences
in CSF metal levels by dividing ALS cases into male and
female groups. As shown in Table 4, there were no significant
differences in CSF metal levels between female and male ALS
patients. This suggests that sex may not be a confounding
factor in CSF metal/metalloid levels for ALS patients. Fourth,
to examine potential correlations between metal levels and ALS
disease severity, we performed Pearson correlation analysis,
and found that CSF metals were not correlated with disease
severity (Table 5). Lastly, we conducted correlational assessment
to examine potential associations between metals. As shown in
Figure 2A, positive and significant correlations were found for
the following metals: Cu/Ni, As/Cu, As/Ni, Fe/Cu, Fe/Ni, and
Fe/As. To confirm whether these correlations are specific to ALS
cases, we also conducted a correlation analyses for the control
group. As shown in Figure 2B, significant correlations were
found for As/Cu. This suggests correlations between As and
Cu may not be specific to ALS patients. Correlations between
Cu/Ni, As/Ni, Fe/Cu, Fe/Ni, and Fe/As in ALS patients may be
interesting to investigate for future studies. These results are
interesting as many of the metals listed such as Mn, Hg, and
As were not found significantly different in the above analyses,
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FIGURE 1

The scatterplots illustrate CSF Cu (A), Ni (B), Hg (C), As (D), Mn (E), and Fe (F) levels found in control, bulbar-, and spinal-onset ALS patients. Data
presented indicate median and IQR. *p < 0.05.

TABLE 3 Distribution of CSF metal/metalloid levels (median, 25th, and 75th percentile) by disease onset.

Metal/metalloid (µg/L) Control
N = 9

Median (IQR)

Spinal onset
N = 20

Median (IQR)

Bulbar onset
N = 9

Median (IQR)

Cu* 129.7 (95.55–258.7) 78.11 (70.71–124.1) 93.37 (66.78–191.7)

Ni* 2.23 (1.84–3.73) 4.21 (3.27–6.23) 3.30 (1.65–3.64)

Hg 0.30 (0.22–0.55) 0.34 (0.20–0.41) 0.23 (0.14–0.38)

As 0.90 (0.59–1.55) 0.67 (0.59–1.01) 0.84 (0.57–1.59)

Mn 2.07 (1.39–2.85) 2.76 (1.34–3.91) 1.71 (1.48–2.01)

Fe 283.0 (197.8–371.9) 193.2 (151.5–274.3) 254.5 (177.6–330.2)

*Mann–Whitney test shows significant difference between Spinal and Control groups for Cu (p = 0.04) and Ni (p = 0.02), as well as between Bulbar and Spinal groups for Ni (p = 0.03).

although synergistic or mixture effects between metals have also
been reported in other ALS studies (Figueroa-Romero et al.,
2020).

Correlation of cerebral spinal fluid
metal/metalloids with serum
triglyceride

Further analyses were conducted to examine potential
correlation between CSF metal/metalloid levels with clinical
features in ALS patients (Table 6). Routine laboratory test
results included data on serum glucose, cholesterol, triglyceride,
T3/T4 levels, etc. Interestingly, these clinical biomarkers were
not found correlationed with CSF metal/metalloids levels. In
addition, while triglyceride levels did not correlate with disease
severity, the spinal group showed significantly higher levels
than the bulbar group (Figure 3). In addition, we did not find

significant correlation between ALSFR-S and triglyceride levels.
Follow-up studies with additional triglyceride and ALSFRS-
R data can be used to examine change in ALSFR-S versus
change in triglyceride levels. This may reveal more about the
potential relationship between tryglyceride and ALS disease
progression. While serum triglyceride is mainly used as a
biomarker for metabolic and cardiovascular disease, recent
studies have indicated potential links to neurodegenerative
diseases (Nägga et al., 2018; Bernath et al., 2020; Liu et al.,
2020). Our findings suggest that while serum triglyceride did
not correlate with any of the CSF metal/metalloids, it may be
associated with the more severe form of ALS.

Discussion

Main findings from this study suggest that CSF
metal/metalloid levels not only differed between controls
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TABLE 4 Distribution of CSF metal/metalloid levels (median, 25th,
and 75th percentile) by sex for ALS cases.

Metal/metalloid
(µg/L)

Female
N = 16

Median (IQR)

Male
N = 13

Median (IQR)

P-value

Cu 78.11 (67.27–169.2) 81.96 (70.25–90.40) 0.68

Ni 3.69 (3.04–6.52) 3.51 (3.10–5.52) 0.68

Hg 0.29 (0.09–0.44) 0.19 (0.09–0.32) 0.45

As 0.97 (0.64–1.52) 0.61 (0.57–0.70) 0.11

Mn 1.74 (0.54–2.88) 1.67 (0.99–3.62) 0.63

Fe 266.2 (161.7–311.1) 185.6 (157.1–246.9) 0.12

TABLE 5 Association between CSF metal/metalloid levels and
ALSFRS-R scores.

Metal/metalloid Correlation coefficients P-value

Cu 0.05 0.77

Ni −0.02 0.91

Hg −0.13 0.56

As 0.04 0.83

Mn 0.30 0.20

Fe 0.03 0.87

and ALS patients, but also between ALS patients with different
forms of onset. Unlike some of the previous studies which
have reported significant differences in various metals between
control and ALS patients, our results indicate that only copper
was significantly lower in the ALS group compared to the
control group. Moreover, copper levels were especially low
in spinal-onset patients. This result is in line with a previous
study which showed lower CSF copper levels in spinal patients
compared to bulbar patients (Patti et al., 2020). Copper
imbalance has been reported in several neurodegenerative
diseases including ALS, Alzheimer’s Disease, Menkes Disease,
and Parkinson’s Disease (Telianidis et al., 2013; Chang and
Hahn, 2017; Hilton et al., 2020; Qin et al., 2022). Currently,
both high and low levels of copper have been correlated with
ALS (Kapaki et al., 1997; Hozumi et al., 2011; Roos et al., 2013;
Peters et al., 2016; Cicero et al., 2017; Qin et al., 2022). In ALS
patient CSF samples, high copper levels have been reported by
two research groups (Hozumi et al., 2011; Patti et al., 2020).
On the other hand, a study led by Kapaki et al. demonstrated
low copper levels in ALS patient CSF (Kapaki et al., 1997).
Despite a lack of consensus between studies, which may be
due to differences in participant characteristics (age, ethnicity,
etc.), it seems that an imbalance in CSF copper levels may
be correlated with ALS pathogenesis. Copper is an essential
trace element that can cross the blood-brain barrier (BBB) via
cerebral capillaries, which are mostly covered by astrocytes
(Choi et al., 2009). In fact, concentrations of copper ions in the
CNS (80 µM) are found higher than that of the blood (16 µM),
muscle (10 µM), and lung (30 µM) (Hamilton et al., 1972). In

the CNS, copper can be found in all parts of the brain and can
function to promote neurotransmission, synaptic activities, free
radical detoxification, and mitochondrial respiration (Gaier
et al., 2013; Gil-Bea et al., 2017; Giampietro et al., 2018; Qin
et al., 2022). Copper ions are incorporated into the cell via
copper transporter 1 (CTR1) and divalent metal transporter 1
(DMT1) membrane proteins (Kuo et al., 2001; Lee et al., 2001;
Arredondo et al., 2003). Once inside the cell, copper levels are
closely regulated by efflux and influx pumps such as ATP7A
(Tokuda and Furukawa, 2016). SOD1 is known to have high
affinity for copper ions; changes in its expression level have
been evidenced to influence copper levels in the spinal cord
(Li et al., 2006; Lelie et al., 2011). However, copper imbalance
has not been reported in SOD1-ALS cases, suggesting that
ALS-related copper imbalance may be regulated via other
trafficking systems. For example, various copper-requiring
proteins and enzymes such as P-type ATPase, and cytochrome
c oxidase receive copper ions via specific chaperones including
HAH1, COX17, and CCS (Petris et al., 1996; Wong et al., 2000;
Takahashi et al., 2002; Hamza et al., 2003). Notably, changes in
ATP7A and CTR1 levels have also been found to affect copper
accumulation inside the cell (Tokuda et al., 2013). In addition,
mitochondrial copper has also been suggested to play a role
in the pathophysiology of ALS, as mitochondrial dysfunction
and metabolic defects represent important hallmarks for ALS
motor neuron degeneration (Kong and Xu, 1998; Wiedemann
et al., 2002; Muyderman and Chen, 2014; Carrì et al., 2017).
Although no direct evidence of copper-induced mitochondrial
dysfunction has been reported in the development of ALS,
changes in certain copper-dependent enzymes such as PARK7,
COX1, and COX2 have been shown to trigger neuronal death
through regulation of mitochondrial function (Fujita et al.,
1996; Borthwick et al., 1999; Wang et al., 2016). At the moment,
there is no established consensus on whether high or low
levels of copper is responsible for ALS, rather it seems that
the imbalance of copper levels may be the key as both copper
deficiency and accumulation can have compromising effects on
normal cellular functions. Future studies cross-linking copper
levels in the human body and potential changes in copper
trafficking systems may provide further insight.

Next, while our findings indicate that there is no significant
difference in CSF nickel levels between control and ALS
groups. However, spinal-onset patients showed comparably
higher nickel levels than both the control and bulbar groups.
Nickel is considered an irritant, but also an essential and
carcinogenic metal, known to accumulate in neuronal tissues,
promote oxidative stress and mitochondrial damage, as well as
inhibit neurotransmission (Saito et al., 2016; Song et al., 2017;
Ijomone et al., 2018; Andrew et al., 2022). Previous reports have
indicated that nickel is capable of stimulating the production
of serum nitric oxide, which can interact with mitochondrial
superoxide to form reactive peroxynitrite, thereby regulate
neurotransmission (Cruz et al., 2004; Calabrese et al., 2010;
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FIGURE 2

The figure illustrates correlation coefficients for CSF metal/metalloids in ALS cases (A) and healthy controls (B). Significant correlations
(p < 0.05) were found for the following metals: Cu/Ni, Cu/As, Ni/As, Fe/Cu, Fe/Ni, and Fe/As (ALS) as well as Cu/As (control). Thresholds of
significance are as follows: 0.85 for healthy controls and for 0.3 for ALS cases.

Hattiwale et al., 2013). In a case-control study based on ALS
patients in Denmark, Dickerson et al. found that women
occupationally exposed to nickel had higher adjusted odds
of developing ALS (Dickerson et al., 2020). In another study
based on examining metal biomarkers in teeth, ALS cases
were found to have 1.65 times more nickel than controls,
indicating potential correlation between childhood metal uptake
and later adulthood-onset (Figueroa-Romero et al., 2020).
Interestingly, high nickel levels in body fluids of AD patients
have been positively correlated with alcohol consumption and
hepatotoxicity, and that nickel chelation may have beneficial
effects on inhibiting Aβ42 peptide aggregation (Ormerod et al.,
1997; Benoit and Maier, 2021). While nickel chelation may be a
promising therapeutic strategy for ALS, potential difference in
nickel levels between spinal and bulbar onset patients warrant
further evaluation.

This study also examined potential sex-dependent
differences in CSF metal/metalloid levels in ALS patients.
We report that there was no significant differences in CSF
metal/metalloid levels between male and female ALS patients
nor healthy controls. A previous study based on participants
from Bangladesh reported difference in selenium concentrations
based on gender, and that males exhibited higher selenium
levels than females. Depending on the dose, selenium can either
be nutritional and toxic for the human body. Probable link
has been reported between selenium toxicity and increased
ALS risks (Vinceti et al., 1997). In particular, evidence suggests
that selenium accumulation can induce neuronal apoptosis,
and promote the translocation of copper/zinc SOD1 into the
mitochondria (Xiao et al., 2006; He and Cui, 2021; Wandt

et al., 2021). However, as with many metals, controversial
results regarding selenium levels in ALS patients have also been
reported. In particular, reduced blood selenium levels were
found correlated with ALS in two other studies (Moriwaka
et al., 1993; Peters et al., 2016).

In addition to onset- and sex-dependent analyses, we also
examined potential associations between metals in ALS patients.
In particular, correlations between Cu/Ni, As/Ni, Fe/Cu, Fe/Ni,
and Fe/As were found specifically for ALS patients. Further
investigation into the correlation between Fe and other CSF
metal/metalloids may be interesting as it was found to be
positively correlated with all tested metals except for Hg and Mn.
Many of these metals such as mercury, arsenic, and manganese
were not individually associated with either ALS onset or disease
severity, although the results may be an indication of potential
mixture effects between metals. Previous research has also
indicated that exposure to metal mixtures may be positively
correlated with disease outcome in ALS mouse model (Figueroa-
Romero et al., 2020).

Over accumulation of triglycerides can be an important risk
factor for cardiovascular disease. In the brain, imbalance of
lipids or dyslipidemia can disrupt normal synaptic functions,
membrane trafficking and protein activities (Blasco et al.,
2017). Increased triglyceride level has been shown to be
positively correlated AD risks (Nägga et al., 2018; Bernath
et al., 2020). Yet, correlations between serum triglyceride levels
and ALS risks have so far been inconsistent (Dorst et al.,
2011; Blasco et al., 2017; Mariosa et al., 2017; Liu et al.,
2020). High serum triglyceride levels were found correlated
with prolonged life expectancy and better prognosis for ALS
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TABLE 6 Association between CSF metal/metalloid levels and serum
triglycerides for ALS cases.

Metal/metalloid Correlation coefficients P-value

Cu −0.03 0.84

Ni −0.11 0.58

Hg 0.34 0.13

As −0.11 0.55

Mn 0.01 0.95

Fe −0.30 0.12

FIGURE 3

Serum triglyceride level is significantly higher in the spinal group
compared to the bulbar group. Data presented for all ALS cases
indicate mean and standard error. *p < 0.05.

patients in several studies (Dorst et al., 2011; Nakamura et al.,
2022). However, the difference in serum triglyceride levels
between ALS patients and healthy controls are still controversial.
One study found that serum triglyceride levels are found
lower in ALS patients than in controls (Blasco et al., 2017).
However, another study reported no significant difference in
serum triglyceride between ALS patients and healthy controls
(Chiò et al., 2009). To the best of our knowledge, this
is the first study to examine potential associations between
CSF metal/metalloids and serum triglyceride levels in ALS
patients. Our results indicate that CSF metal/metalloids were
not correlated with serum triglyceride levels in ALS patients.
Previous epidemiology studies have linked heavy metal exposure
to dyslipidemia. In particular, mercuy, lead, arsenic, copper,
nickel, and cadmium were reported to be positively associated
with serum triglyceride levels (Buhari et al., 2020; Ma et al.,
2020; Kim et al., 2022). In animal studies, cadmium has
been evidenced to enhance triglyceride accumulation through
reduction of lipoprotein lipase activity (Barañski et al., 1983).
Interestingly, serum triglyceride level did not correlate with
ALS disease severity, although it was significantly higher in

the spinal group compared to the bulbar group. Further
confirmation is warranted, especially with the inclusion of a
control group.

Results of this study is limited by the relatively small
sample number and singularity in the type of sample
used. Another major limitation of this study is that the
measurements were only carried out once. We acknowledge
that data interpretation can be limited by sample size and
statistical imperfections. However, despite these limitations,
this observational study presents valuable new information.
Through the implementation of CSF samples, inclusion of
stratified groups and analyses, we were able to gain insight
into the potential association between CSF metal/metalloid
levels with different forms of ALS onset, disease severity, sex,
and serum triglycerides. Further validation is necessary with
a larger participant pool and the incorporation of various
sample types including urine, blood, and hair. In addition, it
remains unclear whether these findings can be extended to
other populations, although we provide new insights from a
less studied geographical region. Lastly, future studies may
also consider examining both genetic changes and metal
exposure to gain further insight, including RNA-seq analyses
to examine potential change in gene expression along with
metal/metalloid levels.

Conclusion

Metal homeostasis in the CNS is critically important
for normal cellular processes and brain function. Our study
examined potential associations of six CSF metal/metalloids
with onset- and sex-specific ALS risks. Main findings identified
that CSF copper and nickel levels differed by form of ALS
onset. We conclude that while little difference was found
between control and ALS groups, our results highlight the
association of CSF metal/metalloids with ALS onset, sex, and
disease severity.
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