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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system

with complex determinants, including genetic and non-genetic factors. Despite this

heterogeneity, a key pathological signature is the mislocalization and aggregation of

specific proteins in the cytoplasm, suggesting that convergent pathogenic mechanisms

focusing on disturbances in proteostasis are important in ALS. In addition, many

cellular processes have been identified as potentially contributing to disease initiation

and progression, such as defects in axonal transport, autophagy, nucleocytoplasmic

transport, ER stress, calcium metabolism, the unfolded protein response and

mitochondrial function. Here we review the evidence from in vitro and in vivo models

of C9ORF72 and TDP-43-related ALS supporting a central role in pathogenesis for

endoplasmic reticulum stress, which activates an unfolded protein response (UPR), and

mitochondrial dysfunction. Disruption in the finely tuned signaling between the ER and

mitochondria through calcium ions may be a crucial trigger of mitochondrial deficits and

initiate an apoptotic signaling cascade, thus acting as a point of convergence for multiple

upstream disturbances of cellular homeostasis and constituting a potentially important

therapeutic target.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is the most common type of motor neuron diseases and
is characterized by progressive degeneration of upper and lower motor neurons, resulting in
loss of voluntary muscle action and eventually death through respiratory failure. While the
majority of cases are sporadic, ∼10% of ALS is due to inheritance of a genetic mutation in an
autosomal dominant pattern. To date, mutations in up to 20 genes have been associated with
ALS, including superoxide-dismutase 1 (SOD1), TAR-DNA binding protein (TARDBP) and FUS
(Mathis et al., 2019; McCann et al., 2020). However, the most common single mutation is a
GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene, which accounts for ∼40% of
all familial ALS and significant numbers of apparently sporadic cases, and provides a clear genetic
link to frontotemporal dementia (FTD) (DeJesus-Hernandez et al., 2011; Renton et al., 2011).

There are multiple potential mechanisms through which the hexanucleotide might drive
pathogenesis in C9ORF72-related disease, leading to either toxic gain of function or loss of
normal function: formation of nuclear RNA foci that sequester a range of hnRNPs; production
of poly-dipeptides (GA, GP, GR, PA, PR) through repeat non-ATG (RAN) translation leading
to the accumulation of toxic aggregates; or haploinsufficiency due to transcriptional silencing.
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While these mechanisms are not mutually exclusive, and
each may operate in different phases of disease, the relative
contribution of acquired toxicity and loss of normal function
as initiating factors in C9ORF72-related neurodegeneration is
still unclear.

Despite the genetic heterogeneity of familial ALS, abnormal
accumulation of misfolded or aggregated proteins is a unifying
pathological feature. The organelle mainly responsible for native
folding, post-translational modifications and trafficking of many
proteins is the endoplasmic reticulum (ER) (Schroder, 2008;
Bernard-Marissal et al., 2015b). Quality control performed
by ER-resident chaperones ensures precise folding of newly
synthesized proteins and identifies unfolded or misfolded
proteins, which are then targeted to specific degradation
pathways (Kaushik and Cuervo, 2015). When proteostasis is
disturbed through accumulation of misfolded or unfolded
proteins, a stress response is triggered which is mitigated by
an adaptive signaling mechanism called the “unfolded protein
response” (UPR). The UPR reduces general translation and
enhances the expression of specific UPR target genes, such as
ER chaperones to restore protein folding and promote quality
control mechanisms or degradation of irreversible misfolded
proteins. Dysfunction of proteostasis significantly increases ER
stress and is associated with neuronal degeneration (Scheper and
Hoozemans, 2015).

The ER is found in close physical and functional connection
with mitochondria and numerous lines of evidence indicate that
mitochondrial dysfunction is involved in ALS. Mitochondria are
the main source of cellular energy via oxidative phosphorylation
and, through physical and functional interaction with the ER,
they both contribute to common essential functions such as
calcium homeostasis and lipid biosynthesis. Abnormalities in
mitochondrial morphology have been observed in tissue from
patients affected by sporadic or familial ALS, and in cellular
and animal models, with defects in mitochondrial transport and
morphology first demonstrated in cultured primary neurons
harboring ALS causing mutations (De Vos et al., 2007; Magrane
et al., 2009, 2012; Song et al., 2013). While the majority of
early studies linking mitochondrial dysfunction with ALS were
based on SOD1 models, it has become evident in the last decade
that both functional and morphological defects in mitochondria
are found in other familial ALS cases, particularly those due to
mutations in TARDBP or C9ORF72.

Here we discuss recent evidence for ER and mitochondrial
dysfunction associated with C9ORF72 and TARDBP mutations
in the context of underlying gain of function vs. loss of
function mechanisms.

CALCIUM SIGNALING BETWEEN ER AND
MITOCHONDRIA

The ER takes part in multiple cellular functions, including
calcium (Ca2+) homeostasis, lipid and protein biosynthesis,
protein folding, post translational modification and regulation
of gene expression (Yoshida, 2007; Eden, 2016) reviewed in
Hetz and Saxena (2017). A multitude of studies suggest that

disruptions in ER proteostasis and crosstalk with mitochondria
can result in neuronal degeneration and motor neurons are
highly susceptible to perturbations in these pathways.

One of the main functions of the ER is to store high
levels of Ca2+, which regulate functions within the ER as well
as other critical cellular functions by modulating its release
into the cytosol. Ca2+ ions are actively transported into the
ER against the gradient by the sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA) pump, and sequestered by Ca2+-binding
proteins present in the ER. Intraluminal levels of Ca2+ in the
ER regulate the activity of Ca2+-binding chaperones, such as
GRP78/BiP, GRP94 and protein-disulphide isomerase (PDI) (Coe
and Michalak, 2009). In addition, GRP78/BiP is also a regulator
of the Unfolded Protein Response (UPR). It is involved in
the folding, assembly and translocation of newly synthesized
proteins, and its association with peptides is dependent on a high
Ca2+ concentration (Vogel et al., 1990). Calnexin and calreticulin
are both Ca2+ binding ER chaperones involved in the quality
control process where they promote proper folding of nascent
proteins in a Ca2+-dependent manner (Prell et al., 2013). These
chaperones can also act as high-capacity Ca2+ stores at the
mitochondria-associated membrane when Ca2+ is transferred to
the mitochondria and genetic ablation of calreticulin was found
to accelerate muscle denervation in ALS (Bernard-Marissal et al.,
2015b).

CALCIUM MISCOMMUNICATION
BETWEEN ER AND MITOCHONDRIA IN
ALS

Calcium miscommunication between the ER and mitochondria
has recently emerged as a major factor in loss of Ca2+

homeostasis in ALS. Themembranes of the ER andmitochondria
are closely connected at contact sites called mitochondria-
associated ER membranes (MAM). The membranes of the two
organelles are tethered by interactions between several protein
complexes: Mitofusin 1 and 2 (MFN1/2); IP3R and VDAC via
GRP75; and VAPB binding to protein tyrosine phosphatase-
interacting protein 51 (PTPIP51) on the outer mitochondrial
membrane (reviewed in Lau et al., 2018) (Figure 1). Disruptions
in the interactions between these tethering complexes have been
reported in several studies in SOD1, TDP-43 and FUS-related
ALS (Stoica et al., 2014, 2016).

Calcium uptake in the mitochondria is a finely tuned event
with profound importance both for overall cellular homeostasis
and for normal mitochondrial function. Mitochondrial Ca2+

uptake is dependent on mitochondrial membrane potential,
which is developed andmaintained bymitochondrial respiration,
via the electron transport chain to reduce molecular oxygen and
pump out protons. Four enzymatic complexes form the electron
transport chain: NADH and succinate dehydrogenases (complex
I and II), ubiquinone-cytochrome c reductase (complex III), and
cytochrome c oxidase (complex IV). The proton electrochemical
potential drives ATP synthase to produce energy and several
mitochondrial dehydrogenases are Ca2+ dependent (Griffiths
and Rutter, 2009).
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FIGURE 1 | Summary of ER and mitochondrial alterations induced by mutations in C9ORF72 and TARDBP in the context of ALS. ALS-associated mutations in

C9ORF72 and TARDBP are triggers of ER stress by UPR activation, altered Ca2+ signaling and fragmentation of the ER network. Mutant TDP-43 disrupts the

tethering of PTPIP5 and VAPB. In mitochondria, mutations in C9ORF72 and TARDBP associate with reduced ATP production, Ca2+ signaling, complex I activity,

leading to structural fragmentation and reduced mitochondrial transport in axons.

Cytosolic Ca2+ is buffered by mitochondria through the
mitochondrial calcium uniporter (MCU), a transmembrane
protein that sits on the inner mitochondrial membrane in
close connection with the ER membrane (Figure 1). Its
activity is regulated by the EF-hand domain-containing proteins
mitochondrial calcium uptake (MICU) 1 and 2 (Perocchi et al.,
2010; Plovanich et al., 2013). These regulators activate or inhibit
MCU by sensing the Ca2+ concentration in the intermembrane
space (Patron et al., 2014).

RNA sequencing of iPS-derived motor neurons from patients
with mutations in C9ORF72 and TDP-43 has revealed an
altered balance between these two gatekeepers in ALS (Dafinca
et al., 2020). In models of TDP-43 and FUS, an impairment in
the communication between ER and mitochondria leads to a
reduction in Ca2+ uptake in the mitochondria and a subsequent
rise in cytosolic Ca2+ which may activate cellular death pathways
(Stoica et al., 2014, 2016). Consistent with these results, low
mitochondrial Ca2+ uptake was reported in C9ORF72 and TDP-
43M337V iPS-derived motor neurons from ALS patients, which
contributed to increased neuronal death (Dafinca et al., 2020).

UPR ACTIVATION IN ALS

The UPR is activated by three stress sensors: inositol-requiring
transmembrane kinase/endonuclease (IRE1), activating
transcription factor 6 (ATF6) and PKR-like ER kinase (PERK).
Once activated by cleavage in the ER, ATF6 translocates to

the nucleus, where it controls the transcription of target genes
related to protein folding and quality control (Haze et al., 1999).
IRE1 initiates splicing of the transcription factor X-Box-Binding
protein 1 (XBP1), which converts it into an activator of genes
responsible for protein folding, quality control and secretion of
ER-associated degradation proteins (ERAD) (Calfon et al., 2002;
Acosta-Alvear et al., 2007). PERK reduces protein translation
in the ER by phosphorylation of the eukaryotic initiation
factor 2α (eIF2α), decreasing the potential burden of misfolded
proteins (Harding et al., 1999). Furthermore, eIF2α activates
ATF4 driving the expression of a cascade of UPR-targeted genes
responsible for protein folding, autophagy and apoptosis (Tabas
and Ron, 2011). Eventually, the UPR triggers attenuation of
general translation and enhanced expression of genes encoding
chaperones, folding enzymes, and ERAD proteins. A failure to
restore ER homeostasis, leads to activation of apoptotic pathways
(Malhotra and Kaufman, 2007; Krebs et al., 2015).

Evidence for the relevance of this pathway to ALS comes from
studies in human post-mortem spinal cords from sporadic or
familial ALS patients, where the expression of UPR pathway is
significantly increased (Ilieva et al., 2007; Atkin et al., 2008; Hetz
et al., 2009; Ito et al., 2009; Sasaki, 2010). Structural alterations
indicative of ER stress, such as fragmentation, have also been
described in the anterior horn of the spinal cord in ALS and
several chaperones involved in the ER-stress response have been
detected in the cerebrospinal fluid of sporadic ALS patients
(Oyanagi et al., 2008; Sasaki, 2010; Vijayalakshmi et al., 2011).
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Transcriptome profiles of C9ORF72-ALS human cerebellum
and frontal cortex indicate activation of UPR genes as a signature
of pathology, suggesting activation of ER stress (Prudencio et al.,
2015). We reported increased ER stress in iPSC-derived MNs
from patients with C9ORF72 mutations, followed by reduced
mitochondrial membrane potential and altered mitochondrial
morphology (Dafinca et al., 2016). The cells also show evidence
of oxidative stress, with stress granule formation and activation
of apoptosis. RNA sequencing of primary mouse neurons
expressing poly(PR) identified upregulation of genes involved in
ER stress, in particular the transcription factor ATF4, indicating
that poly(PR) activates the UPR (Kramer et al., 2018). This
in itself is reported to upregulate RAN translation, driving
further production of DPRs and becoming a feed-forward
loop (Zhang et al., 2014). In a different study, expression of
synthetic poly(PR) induced ER stress and inhibition of the
UPR increased cell survival (Wang et al., 2019). Consistent
with these reports, RAN translation of the G4C2 expansion was
also found to be enhanced by ER stress and overexpression
of the repeats impaired global translation, while increasing the
formation of stress granules in an eIF2α-dependent manner
(Green et al., 2017). In a recent post-mortem study in C9-
FTD patients, overall levels of pPERK and peIF2α were higher
in the hippocampus of patients and they correlated with the
presence of dipeptide pathology (Gami-Patel et al., 2020). In
an earlier study, downregulation of PERK in the ER was
shown to improve mitochondrial Ca2+ dynamics and restore
mitochondrial elongation, highlighting the connection between
UPR and mitochondrial function (Munoz et al., 2013). In
cortical and spinal motor neurons from a C9ORF72 model with
(G4C2)188 repeats, excitotoxic stress and optogenetic neuronal
stimulation act as promoters of RAN translation and ER
stress response, leading to increased phosphorylation of eIF2α
(Westergard et al., 2019).

Cytoplasmic aggregation of TDP-43, the pathological
hallmark of ALS, may be driven by activation of ER stress in
motor neurons (Ayala et al., 2011; Suzuki and Matsuoka, 2012).
Pharmacological induction of ER stress in neuroblastoma cells
leads to TDP-43 mislocalisation and cleavage, and C-terminal
fragments colocalise with PDI, potentially interfering with
ER function (Walker et al., 2013). Aggregation of TDP-43
could further contribute to increasing levels of ER stress
and subsequent activation of apoptosis (Suzuki et al., 2011).
Moreover, ALS mutations in TDP-43 (G294A, A315T, Q331K,
M337V, N390D, D169G) were shown to cause UPR upregulation
in a Neuro2A cell model (Walker et al., 2013; Wang et al., 2015).

Mechanistic studies demonstrated that ER stress led to
casein kinase 1-dependent phosphorylation of TDP-43, followed
by cytosolic aggregation (Nonaka et al., 2016; Hicks et al.,
2020). Similar conclusions were reached in mutant FUS models,
which showed ER stress and PDI positive aggregates (Farg
et al., 2012). Both wild-type and ALS-mutant FUS and TDP-
43 perturbed ER–mitochondria associations, accompanied by
changes to the VAPB–PTPIP51 interaction and abnormal Ca2+

signaling between the two organelles (Stoica et al., 2014).

DEFICIENT MITOCHONDRIAL
BIOENERGETICS IN ALS

In addition to a role in Ca2+ buffering, mitochondria
primarily act as a source of energy for the majority of
cellular processes. Functional mitochondrial changes, such as
membrane hyperpolarisation, increased ATP production and
respiration are detected in C9ORF72 patient fibroblasts, along
with morphological changes, such as the frequent presence of
mixed populations of elongated, short mitochondria (Onesto
et al., 2016). In the same study, TDP-43A382T fibroblasts showed
a fragmented mitochondrial network along with decreased
membrane potential (Onesto et al., 2016). Our group has
reported reduced membrane potential in motor neurons
derived from iPS cells of C9ORF72 ALS patients and reduced
mitochondrial Ca2+ buffering capacity in both C9ORF72 and
TDP-43M337V iPS-MNs from ALS patients (Dafinca et al., 2016,
2020). Furthermore, a recent study demonstrated abnormalities
in the electron chain machinery in human iPS-derivedMNs from
C9ORF72 patients, where low basal respiration and maximal
mitochondrial respiration were detected (Mehta et al., 2021).
A reduction in bioenergetics in C9ORF72 iPS-derived motor
neurons was correlated with lowered expression of complexes I
and IV of the mitochondrial electron transport chain. Consistent
with these findings, Wang et al. recently showed that C9ORF72
acts as a mitochondrial-inner-membrane-associated protein that
regulates oxidative phosphorylation by stabilizing TIMMDC1, an
essential component for the assembly of mitochondrial complex
I (Wang et al., 2021). In their study, they also demonstrate that
C9ORF72 happloinsufficiency and loss of function leads to a
reduction in mitochondrial complex I activity in patient-derived
neurons from C9ORF72-ALS.

The most convincing direct link between C9ORF72 and
mitochondrial dysfunction has been demonstrated so far by
overexpression of poly-dipeptides. Arguing for a toxic gain
of function, cellular and animal models overexpressing poly-
dipeptides, in particular poly(GR), have consistently shown
mitochondrial alterations. Patient motor neurons derived
from C9ORF72 ALS iPS cells show upregulation of the
p53 pathway, high levels of DNA damage during long-term
culture, followed by production of reactive oxygen species and
increased mitochondrial potential (Lopez-Gonzalez et al., 2016).
An interactome analysis of poly(GR) showed an abundance
of mitochondrial ribosomal proteins, indicating preferential
binding to the mitochondria where it is likely to induce oxidative
stress. Poly(GR) expression in healthy neurons recapitulated
these phenotypes. In a mouse model expressing poly(GR)80,
compromised mitochondrial morphology was also detected
with preferential binding of the dipeptide to the complex V
subunit of the mitochondrial ATP-synthase (ATP5A1), inducing
its ubiquitination and degradation, which is consistent with
reduced levels of ATP5A1 in patient brains (Choi et al.,
2019). Interestingly, poly(GR) has been suggested to act as a
mitochondrial targeting signal and it can be translated in close
proximity to the mitochondrial surface. Frequent stalling of its
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translation triggers ribosome-associated quality control and C-
terminal extension which leads to potentially toxic aggregations
of poly(GR) on mitochondria (Li et al., 2020).

Mitochondria have also recently emerged as a target of TDP-
43 (Magrane et al., 2014; Onesto et al., 2016; Wang et al.,
2016, 2017; Izumikawa et al., 2017; Davis et al., 2018; Gautam
et al., 2019). Abnormal accumulations of mitochondria have
been described in spinal cord motor neurons of mutant TDP-43
transgenic mice and overexpression of mutant or wild-type TDP-
43 in cultured motor neurons triggered similar mitochondrial
morphology and transport abnormalities to those found in SOD1
mice (Shan et al., 2010; Wang et al., 2013). Overexpression
of mutant TDP-43Q331K and TDP-43M337V in neuroblastoma
cells and in primary motor neurons leads to mitochondrial
depolarisation (Hong et al., 2012; Lu et al., 2012; Wang et al.,
2013). Furthermore, in TDP-43G298S and TDP-43A382T patient
fibroblasts, complex I activity was decreased, along with reduced
ATP levels and oxygen consumption (Wang et al., 2016).

RNA sequencing of the axonal compartment in motor
neurons of a TDP-43 knockdown mouse revealed dysregulation
of many transcripts relevant for mitochondrial function and
translation (Briese et al., 2020). Of note, mitochondrial ATP
synthase beta-subunit (ATP5B) was downregulated, which has
previously been shown to bind to FUS in cellular and animal ALS
models (Deng et al., 2018). In this study, TDP-43 knockdown led
to fewer intact mitochondria in axons and reducedmitochondrial
potential compared to healthy motor neurons. In a recent report,
aggregated TDP-43 with ALS-associated mutations was shown to
bind to and sequester a subset of nuclear encoded mitochondrial
DNA, including ATP5B, while increasing expression of a
different subset of mitochondrial DNA and thereby inducing
a global imbalance in the mitochondria (Zuo et al., 2021).
The data available linking TDP-43 mutations and mitochondrial
deficiencies indicate that mitochondrial dysfunctions can occur
both as a result of toxic gain of function, by direct interaction, or
by loss of function, possibly at the transcriptional level.

MITOCHONDRIAL TRANSPORT DEFECTS
IN ALS MOTOR NEURONS

The proper distribution of mitochondria in neurons is essential
for healthy neuronal function and this is supported by the fact
that pathology in neurodegenerative diseases often correlates
with defects in mitochondrial intracellular localization (Chang
et al., 2006; Rui et al., 2006; Schon and Przedborski, 2011;
Reddy et al., 2012). Mitochondria provide the ATP necessary to
actively transport mRNAs, proteins and organelles throughout
the cells, in addition to its role in Ca2+ buffering and
metabolite synthesis (Rui et al., 2006). This distribution is
coordinated by microtubule-based transport mediated mainly
by the motor proteins kinesin-1 and dynein, along with
their adaptors (Schnapp and Reese, 1989; Pilling et al.,
2006). Interestingly, defects in several MAM-associated proteins
(MFN2, VAPB, SIGMAR1) were shown to impair axonal
transport of mitochondria either by interfering with the
attachment of mitochondria to motor proteins, or through

an increase in cytosolic Ca2+ levels that leads to reduced
anterograde/retrograde transport (Wang and Schwarz, 2009;
Misko et al., 2012; Morotz et al., 2012; Bernard-Marissal et al.,
2015a).

While defects in axonal transport have long been associated
with ALS, evidence of mitochondrial transport deficits in
C9ORF72models has only recently emerged. In iPS-derivedMNs
from C9ORF72 patients, fast axonal transport of mitochondria
was found to be impaired, with no differences reported in either
axonalmitochondrial counts or transcript levels ofmitochondrial
tRNA (Mehta et al., 2021). In this study, a major contributing
factor to the deficit in transport was a reduction in basal and
maximal mitochondrial respiration and PGC1α overexpression,
which increases mitochondrial biogenesis, was able to improve
the transport deficit.

In a TDP-43A315T mutant mouse, the earliest disease-
related event observed was a reduction in retrograde
mitochondrial axonal transport, which later led to accumulation
of mitochondria in axon terminals and fragmentation (Magrane
et al., 2014). Both SOD1 and TDP-43 have been found to bind
to the mitochondrial outer membrane, suggesting that they may
physically interfere with mitochondria and potentially impair its
transport (Vande Velde et al., 2008; Wang et al., 2013).

IMPLICATIONS OF ER-MITOCHONDRIA
CROSSTALK FOR SYNAPTIC
TRANSMISSION

Synaptic transmission is an essential neuronal process
and dysfunctional synapses are a major feature of several
neurodegenerative disorders, including ALS. A recent study
demonstrated that synaptic activity increases ER-mitochondria
contacts and, conversely, loss of ER-mitochondria tethering
mediated by VAPB-PTPIP51 leads to reduction of synaptic
transmission (Gomez-Suaga et al., 2019). Recycling of synaptic
vesicles is an energetically-demanding process which is under
the tight control of Ca2+ signaling and the loss of connectivity
between the ER and mitochondria may lead to impairment in
synaptic transmission through a loss of Ca2+ communication
and a reduction in ATP production (Brini et al., 2014). This
highlights the importance of ER-mitochondria connectivity and
how its disruption in ALS motor neurons may have widespread
detrimental consequences on critical neuronal functions,
ultimately leading to neuronal death.

CONCLUSIONS

Despite genetic heterogeneity, functional decline at the cellular
level appears to follow similar pathways in ALS. A valuable
therapeutic target would therefore be an upstream event that
occurs in the majority of affected ALS neurons and recent
evidence points to ER stress and mitochondrial dysfunction
as a potential nodal point in ALS pathology which can be
targeted by drugs. Since TDP-43 pathology is found in 98%
of ALS cases, including in C9ORF72-related ALS, critically
evaluating the connection between TDP-43 pathology, ER-stress
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and mitochondrial dysfunction is important for identifying
therapeutic targets.

Studies in which the ER stress response has been manipulated
in an attempt to ameliorate ALS phenotypes are promising
but inconclusive. Inhibition of eIF2α phosphatase reduced the
phenotypes in TDP-43 mutant animal models (Vaccaro et al.,
2013). However, neither genetic inhibition of the UPR via
ablation of PERK, nor genetic UPR enhancement via ablation
of GADD34, had a beneficial effect in mutant SOD1 mice
(Dzhashiashvili et al., 2019). More recent studies in SOD1-iPSC
and mouse models demonstrated that MNs are more sensitive
to ER stress and identified a number of modifiers, including
TUDCA, a bile acid derivative which is currently undergoing
clinical trials in ALS (Thams et al., 2019; Paganoni et al., 2020).

Most gain of function studies in C9ORF72 have used models
expressing one of 5 poly-dipeptides that can result from RAN
translation, with the majority focusing on the arginine-rich
dipeptides (polyGR or polyPR). These dipeptides were shown
to be toxic in various cellular and animal models, but the
reliance on overexpression should prompt caution in interpreting
these studies as supporting a disease mechanism mediated by
mitochondrial dysfunction. Models which activate cell death
pathways for whatever reason will always involve mitochondria
as an active player, and this may be secondary and non-specific. It
is therefore imperative to use models expressing poly-dipeptides
at physiological levels, either with an inducible system or by
using smaller repeat sizes under controlled expression to avoid
activation of non-specific stress responses and apoptosis.

While most studies indicate that mitochondrial dysfunction
occurs as a toxic gain of function, e.g., through poly(GR),
C-terminal cleaved TDP-43, or TDP-43 aggregation, there is
also evidence that loss of normal TDP-43 function can induce
mitochondrial dysfunction These mechanisms are not exclusive
and could converge to initiate the dysfunction observed in
ALS motor neurons. A loss of normal TDP-43 from the
nucleus could negatively affect the transcription of mitochondrial
proteins, while a toxic gain of function of cleaved TDP-43
in the cytoplasm may interfere with mitochondrial function.

Given recent evidence from animal and cellular models of
C9ORF72, mitochondrial dysfunction may be mediated by TDP-
43 pathology which becomes the driver of mitochondrial deficits
and ER stress in combination with arginine rich poly-dipeptides
that associate directly with these organelles.

In summary, evidence is growing that deficient
interactions between ER and mitochondria are involved in
neurodegeneration, including in ALS. In support of this
hypothesis, mutations in several proteins involved in the
communication between ER and mitochondria are associated
with genetic forms of ALS (VAPB, Sigma1R) (Nishimura et al.,
2004; De Vos et al., 2012). An interactome study performed
in neuronal cells identified C9ORF72 enrichment in the
mitochondrial fraction due to increased interaction with
members of the mitochondrial outer membrane (Blokhuis et al.,
2016). The possibility of C9ORF72 directly interacting with the
function of MAMs remains to be explored. Due to their close
functional and physical connection, a better understanding of
disease mechanisms in ALS could be achieved by studying the
ER and mitochondria as a functional unit, rather than separately.
Irrespective of how cellular stress originates in MNs, it is clear
that modulating the ER stress response and mitochondrial
dysfunction in MNs are promising therapeutic avenues for ALS,
whether sporadic or familial.
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